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Abstract
In this paper, we describe the global approach that has been developed at INRETS-LTE for hybrid powertrain 
sizing, consumption gain evaluation, and optimal control. The procedure is described in the particular case of 
a two clutch parallel hybrid architecture, but could apply to any other configuration. Firstly the context and the 
common issues related to this subject are described. Then our global approach is detailed: sizing procedure, of-
fline global optimization process, method for obtaining suboptimal online energy management laws, and the use 
of these laws on the test bench. Simulation or optimization results are presented at each step of the procedure.
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1.  INTRODUCTION
The green house effect has been discussed for a long 
time and is now recognized as being an important 
problem by the majority of scientists and politicians. 
Consequently, countries have been committed them-
selves to reduce CO2 emission, particularly in the 
ground transportation field, because its share is rather 
important (20 to 30 % depending on countries). One 
secondary reason to this reduction is the increase of 
fuel cost, which is directly related to CO2 emissions.
Hybridization of terrestrial vehicles is one of short to 
mid-term solutions being proposed. A wide range of 
hybrid solutions can be implemented, from the sim-
ple start/stop vehicle (e.g. Citroën C3) to the full and 
complex serial/parallel configurations (e.g. Toyota 
Prius).
The fuel consumption potential gain of these differ-
ent architectures has to be carefully evaluated, taking 
into account the vehicle usage. To be able to define 
the best solutions in terms of fuel economy for a given 
dynamic performance specification book, both simula-
tion and optimization processes have to be performed. 
It is the association between these two approaches 
that is dealt in the first part of this paper. In the second 
part, the results obtained on the dynamic test bench of 
LTE are presented.
The purpose of this paper is to depict the globality of 
our procedure. To obtain more details about particular 

points, the reader should consult the other publications 
of the same authors: [Scordia et al., 2004; Trigui et al., 
2004, 2007].

2.  QUALITATIVE DESCRIPTION OF THE 
PROBLEM
The principle of hybrid vehicles is to associate two 
energy sources on board. Strictly speaking, a conven-
tional thermal vehicle is a hybrid one. But our choice 
is to speak of hybrid vehicles when at least one of the 
following functions is implemented:
(1)	 Start/stop: the ability to shut down the internal 

combustion engine (ICE) when the vehicle is 
stopped;

(2)	 Brakes regeneration: the vehicle kinetic or poten-
tial energy recovery due to reversible power elec-
tronics;

(3)	 “Boost”: the possibility to assist the ICE with the 
electric motor (EM) during the takeoff.

(4)	 Electric mode: the ability to drive the vehicle only 
with the EM.

(5)	 Auxiliaries’ energy management optimization: 
the choice of the battery charge instants and the 
amount of this charge: it implies to allow a deeper 
battery discharge than usually tolerated in the 
conventional vehicles (from 13.8 V to 14.2 V for 
the open circuit voltage).

The influence of these possibilities on the fuel con-
sumption is examined in § 5.
In the scope of this paper, we focus on the two clutch 
parallel hybrid architecture (Figure 1), which permits 
all the possibilities previously described. Its main ad-
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vantages are:
(1)	 Inertial ICE start, that is to say the ability to start 

the ICE with the vehicle kinetic energy, before-
hand taken off by the EM;

(2)	 Better brakes regeneration potential, due to the 
suppression of the ICE drag torque.

But its drawbacks are:
(1)	 Complex coordination between the different ele-

ments: clutches, EM, ICE;
(2)	 the breaking of the torque transmission during 

gear  shifting;
(3)	 belt accessibility.
The goal of this work is to minimize the fuel con-
sumption of the hybrid drivetrain, while satisfying the 
requirements of dynamic performance. To obtain the 
greatest possibilities of control, we consider robotized 
gearbox and clutches. All these components must be 
controlled by the embedded intelligence, the driver 
must not interact. It corresponds to the following func-
tions:
(1)	 Torque repartition between the ICE and the EM;
(2)	 Clutch C1 and C2 opening/closing;
(3)	 Gearbox ratio switching.
The behaviour of these components and their interac-
tion acts on fuel consumption. Our purpose is to con-
trol them optimally so as to minimize the criterion of 
the problem that is fuel consumption.
It is a common practice to evaluate vehicle consump-
tions on speed versus time driving schedules. For ex-
ample, the normalized New European Driving Sched-
ule (NEDC) is represented on Figure 2 [EEC, 1990]. 
The NEDC cycle is not representative of mean driving 
conditions, because of very steady speeds, and also 
because the compelled gear shift strategy is defined by 
the standard [EEC, 1990] and entails low ICE rotation 
speeds. It will be used in the following paragraphs. 
More realistic driving schedules have been elaborated 
at INRETS, for example HYZEM and ARTEMIS 
ones [Andre, 1997, 2002], which are used in § 3. They 
result from two measurement campaigns lead across 
Europe on light duty vehicles. Each campaign has led 

to several driving schedules representing a given vehi-
cle usage: generally urban, road, and highway.
As the considered hybrid vehicle can work in all-elec-
tric mode, the first idea to minimize consumption is to 
never start the ICE, unless it is compulsory to obtain 
the desired dynamic performances.
But then the battery of the vehicle would be quickly 
fully discharged. If the vehicle does not offer grid-
charging possibility, that is to say if it is a “charge-
sustaining” hybride vehicle (by opposition to “charge-
depleting”), it is not admissible. Then we must control 
the battery State Of Charge (SOC) so as to keep it in a 
range of few percents of the battery total capacity.
If the future rolling conditions of the vehicle are 
known in advance (that is the case if we evaluate the 
fuel consumption on a given driving schedule), we 
obtain a significant advantage for the determination of 
the optimal control of the drivetrain. As the amount of 
knowledge about the problem is larger, our possibility 
to minimize the consumption is greater. So it is partic-
ularly suited for optimization purpose. This approach 
with known-in-advance driving schedule is called of-
fline global optimization approach. At the opposite, 
the online approach does not suppose prerequisite 
knowledge of the future: it is the case in practice, so it 
was the final goal of our work § 4.
Similarly to the distinction online/offline, it is a com-
mon practice to differentiate the backward and the 
forward modelling approach:
(1)	 In the backward approach, the target speed and 

corresponding torque are strictly imposed to the 
wheels. There is no speed control. This formalism 
is adapted to a global optimization tool that we 
have developed, called KOALA [Scordia et al., 
2004], because it is difficult, if not impossible, to 
perform exact optimization (not heuristic) with 
dynamic speed control. One could note that this 
approach is used in the energy oriented software 

Fig. 1  Two clutch parallel Hybrid vehicle in a 12/42 
V electrical architecture

Fig. 2   New European driving cycle
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Advisor created at NREL [Advisor, 2000].
(2)	 A forward approach, which is causal and often 

more accurate since it takes into account transient 
phenomena and can be easily converted into a real 
time process. A tool has been developed by LTE, 
in Matlab/Simulink language, called VEHLIB 
[Trigui et al., 2004]. It is well-suited for vehicle 
dynamic performances evaluation.

3.  GENERAL DESCRIPTION OF THE GLOBAL 
APPROACH
We present here a method, which can be applied to 
any type of vehicle, based on a combined concept 
which uses the two separate tools, KOALA and VEH-
LIB. This work is split in four steps, with the follow-
ing goals:
(1)	 First step (§ 4)

Sizing of the components of a hybrid vehicle, 
with respect to a given specification book. The dy-
namic performance criterion is the 0-100 km/h ac-
celeration time. We also defined a minimum ICE 
power to be able to continuously drive the vehicle 
at 110 km/h on a 5 % slope, which is a common 
constraint when sizing a hybrid vehicle [Paganelli, 
1999; Akihiro et al, 1999]. The sizing can be done 
with or without downsizing of the ICE. The com-
putations are performed using VEHLIB.

(2)	 Second step (º§ 5)
Evaluation of the consumption potential gain of 
the previously sized hybrid vehicle, with respect 
to an a priori known normalized or real use driv-
ing schedule. “Potential” means that the computed 
fuel consumptions are offline optima. They cannot 
be reached online, the main reason is that online 
the driving schedule is not known in advance. 
This stage is carried out with our backward/offline 
KOALA optimization software.

(3)	 Third step (§ 6)
Elaboration of online energy management laws, 
using the instantaneous optimization results given 
by KOALA. These results make up a learning 
base to construct a radial-basis-functions (RBF) 
neural network, that is then used in the forward/
online   simulation tool VEHLIB.

(4)	 Fourth step (§ 7)
A version of VEHLIB has been dedicated to the 
dynamic test bench of INRETS-LTE, to perform a 
Hardware-In-the-Loop (HIL) simulation. The fuel 
consumption measured on this bench is the final 
goal of our work.

The consumption potential gain of second step de-
creased when adapting the optimization results to an 
online approach. So there is a consumption increase 
between steps 2 and 3. This is also the case between 
steps 3 and 4, because of the differences between the 
online modelling tool VEHLIB, and the real world 
(dynamic test bench).

4.  FORWARD SIMULATION TOOL VEHLIB
4.1 Simulation formalism
The primary goal of VEHLIB is to develop an ef-
fective tool for predicting the dynamic performance 
and energy consumption of any type of vehicle. This 
objective leads us to the block diagram formalism, 
with inputs and outputs that essentially represent the 
effort and flux variables (Figure 3), as it is the case in 
bond graph formalism [Dauphin Tanguy, 1999]. For a 
given subsystem of the vehicle, the adopted formalism 
allows several levels of modelling, of different levels 
of complexity. In the frame of this work, VEHLIB has 
been used to size some hybrid vehicles.

4.2 Sizing procedure
The objective is to replace the conventional power-

Fig. 3  Example of elements in block diagram formalism
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train of a classical thermal vehicle with a hybrid pow-
ertrain. This replacement procedure is called hybridi-
zation; it consists in:
(1) 	Keeping the same vehicle chassis and body;
(2) 	Adding an electric motor of a chosen power;
(3) 	Adding a battery with a power adapted to the pre-

viously chosen electric motor. If the battery has 
not the requisite battery voltage to use the electric 
motor, we add a convenient DC/DC boost con-
verter;

(4) 	Adapting or not (see § 4 C) the internal combus-
tion engine so as to meet the specification book 
requirements.

For the rest of this article, the original thermal vehicle 
is called “reference vehicle”.

4.3 Specification book
Once the electric motor maximum power has been 
chosen, there are two possibilities when performing 
step 4 of the hybridization of the reference vehicle:
The first one, keep the same internal combustion en-
gine than the reference vehicle one. Generally this 
results in an improvement of the vehicle dynamic per-
formances in comparison with the reference vehicle 
ones. The second one, adapt the internal combustion 
engine power, so as to reach the reference vehicle dy-
namic performances, and keep reasonable steady-state 
performances on highway. This generally results in a 
downsizing of the engine.
For the two possibilities, the battery is supposed to be 
charged enough to maintain its nominal power capa-
bilities. The decrease in dynamic performances due 
to a possibly discharged battery is evaluated but not 
taken into account during the sizing procedure.
For the rest of the document, the reference vehicle is a 
Renault Clio 1.5 l dCi, which characteristics are given 
in Table 1.

The dynamic performances of the sized vehicles are 
shown on Figure 4 and Figure 5. The 0-100 km/h 
dynamic performance given by the manufacturer (Re-
nault) are reported on the ordinate axis, for the refer-

ence vehicle, the least, and the most powerful existing 
Clio. Two curves are computed thanks to VEHLIB: 
performances with charged or fully discharged battery. 
This last case corresponds to the worst possible situa-
tion, and might never happen. Note that there is a 1.5 
second gap between the official performance given by 
Renault (yellow point) and the VEHLIB simulation. 
This may be due to the fact that the measured engine 
maximum power is 10 % lower than the Renault pub-
lished results (54 kW on the engine test bench of LTE 
against 60 kW announced by Renault).
Without downsizing (Figure 5), the performances re-
main acceptable, whatever the battery state of charge 
may be. Whereas with downsizing (Figure 4), when 
the battery is discharged, performances decrease high-
ly and could be largely worse than the least powerful 
vehicle version.

5.  BACKWARD OPTIMIZATION TOOL KOALA
The step after the sizing of a hybrid vehicle is the 
evaluation of its minimum fuel consumption. But this 
consumption is very dependant on the implemented 
energy management law. That is why we had the idea 
to get rid of this degree of freedom: the goal was to 

Table 1  Renault Clio 1.5 DCI characteristics

Differential gear ratio

Wheel radius (m)

Mass without powertrain (kg)

Internal Combustion Engine
type

Rolling/aerodynamic 
ressitance (N) (v in m/s)

Gearbox ratios

780

Compression ignition
Common rail direct injection

85+1.38.v+0.402.v2

0.296

I: 3.46; II: 1.87; III: 1.15;
IV: 0.82; V: 0.66

3.68

Fig. 4  0-100 km/h acceleration with ICE downsizing

Fig. 5  0-100 km/h acceleration without ICE downsizing
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judge each vehicle with the best energy management 
law possible to conceive. That signify to find the opti-
mal control for each vehicle. As we said earlier in § II, 
it is a great advantage to know the rolling conditions 
in advance.
So we have developed a specific optimization soft-
ware, named KOALA. Its objective is the determina-
tion of optimal energy management laws as regards 
consumption, for a given HEV and vehicle usage.
It is important to notice that all the consumption re-
sults given by KOALA are maximum potential gains, 
because they cannot be reached in a real vehicle (using 
online strategies). The two main reasons are the fol-
lowing:
(1)	 Firstly, the optimal strategies given by KOALA 

are computed offline with the a priori knowledge 
of the entire driving schedule;

(2)	 Secondly, neither comfort constraints nor highly   
dynamic phenomena (e.g. clutch opening model-
ling) are taken into account. The reason for these 
simplifications is either mathematical complexity 
or combinatory explosion.

But, thanks to its reasonable computation speed and 
its flexibility, KOALA enables us to:
(1)	 Evaluate the minimum consumption attainable 

by an ideal online strategy, for any vehicle and 
for any sage. This enables a clear comparison 
between different hybrid vehicles, in term of fuel 
economy. Particularly it allows us to forecast 
the best sizing for a given architecture and set of 
components. Moreover, it allows us to evaluate 
the performance of any online strategy (by com-
parison with the optimum potential).

(2)	 From the optimal strategies given by KOALA, we 
can deduce online energy management laws. A 
systematic approach has been developed in LTE, 
using neural networks (see º§ 6).

The vehicle model and the equations of the optimiza-
tion problem are detailed in a to-be-published paper in 
International Journal of Vehicle Design.
The solving of this optimization problem can be man-
aged in two ways. The first method is variation calcu-
lation [Culioli,1994], used by [Dubray, 2002, Delprat, 
2002]; the second method, dynamic programming 
based upon Hamilton-Bellman-Jacobi (HBJ) func-
tional equation, or more generally Bellman optimality 
principle [Borne et al., 1990, Culioli, 1994, Lin et al., 
2004].
The advantages of the HBJ method, used for example 
by [Bouchard, 2002, Rimaux et al., 1999, Meaude 
Venot, 2001], are the following:
(1)	 Easy control of the total deviation of State of 

charge (SOC) on the driving schedule (DSOC = 
final SOC - initial SOC);

(2)	 Possible simple introduction of instantaneous   
constraints (e.g. Start/Stop). The abilities of the 
power train are easily controlled at each time;

(3)	 Facilities are naturally given to keep discrete 
measurements made on engine testbeds. It is not 
compulsory to compute analytic approximation of 
efficiency maps;

(4)	 No limitation due to analytic formulation appears. 
For example we can easily introduce real-time 
phenomena such as clutch slip.

However the main drawback of the HBJ method is the 
impossibility of taking into account complex battery 
models using parameters depending on SOC, because 
of combinatory explosion [Lin et al., 2004].
Generally speaking, vehicle models used in global 
optimization process cannot take into account fast 
transient phenomena. It is not important since we have 
been focusing here on the energetic assessment on a 
driving schedule (the most important thing in model-
ling was to take into account inertia, that is the case). 
Usually, time sample for normalized and actual use 
driving schedules is 1 s. This is also our choice in the 
scope of this article, as it leads to precise enough re-
sults.
The KOALA tool resolution algorithm is based upon 
HBJ equation. We have implemented the following 
possibilities:
(1)	 Gear shift optimization;
(2)	 Start/stop;
(3)	 Optimal auxiliaries power management;
(4)	 Serial flow (direct energy transfer from ICE to 

battery, this is the case today on classical vehi-
cles) or not;

(5)	 Energy recovery (energy transfer from wheel to 
battery in deceleration phases) or not.

By allowing or forbidding some of these possibilities, 
it is possible to split the maximum potential gain in 
different parts to know the exact origin of the con-
sumption decrease. On Figure 6 we have represented 
the variation of the potential consumption gains and 
their decomposition, depending on electric motor 
maximum power, as well as this precise decomposi-
tion. For this figure, consumption is evaluated on 
NEDC. Usually this cycle is performed with cold 
start. Since we can not take into account the engine 
temperature rise in the optimization scope, we assume 
a start in nominal temperature conditions. Each point 
abscissa on the graph corresponds to a particular siz-
ing of the powertrain: a given EM maximum power, 
and the downsized ICE so as to meet the specifica-
tion book. Each consumption point on this figure 
corresponds to a global optimization with known-in-
advance driving schedule. The bottom of the light area 
corresponds to the minimal consumption that is possi-
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ble to reach with the current vehicle and the best-ever 
control. On NEDC, the minimum consumption is at-
tained for about 15 kW of electric motor power. It cor-
responds to an optimum compromise between brakes 
regeneration and ICE downsizing gain (adaptation of 
the efficiency map to the driving schedule). Above 
this power, the EM and battery weights increase, with-
out subsequent brakes regeneration gain, and without 
further downsizing of the ICE, because of the minimal 
engine power constraint (to keep reasonable steady-
state performances on highway). This prevents the 
consumption to keep on decreasing. Here is the split 
of different gains for an EM power of 15 kW:
(1)	 The top of the start/stop (S/S) area (top of area 1) 

corresponds to a hybrid vehicle used without its 
hybrid functions (3.54 l/100 km at 15 kW). If we 
allow to perform S/S, the consumption gain com-
pared to 3.54 l/100 km is about 5 % (bottom of 
area 1);

(2)	 Moreover, if we allow gear shift optimization (in 
the case of robotized gearbox), we obtain an ad-
ditional gain of 5 % (bottom of area 2);

(3)	 Then, if we perform auxiliaries power manage-
ment (see § 2), we obtain a gain of about 2 % 
(bottom of dark area 3). If the auxiliaries power 
had been higher, this gain would have been great-
er;

(4)	 The greatest gain is due to brakes regeneration, 
that is about 15 % in our case (difference between 
the bottom of dark area 3 and line 6).

(5)	 It appears that the serial flow does not permit to 
obtain a significant additional gain. Indeed, ex-
amine the consumption difference between the 
bottom of dark area 3 and line 5: it is very slight. 
Likewise, examine the difference between line 6 
and the bottom of light area 4. The reason for the 
slight gain brought by serial flow is that it implies 

poor global efficiency for the vehicle (the energy 
flows through the ICE, electric motor, power 
electronics and battery). Nevertheless, sometimes 
serial flow has to be used, to prevent the battery 
from a deep discharge.

The reader will find a detailed explanation and analy-
sis of this figure, as well as more parameter variations 
(EM maximum efficiency, and auxiliaries’ power) in 
the literature [Scordia et al., 2004].

6.  VI NEURAL NETWORK APPROACH
6.1 A brief review concerning the elaboration of en-
ergy management laws
A tool such as KOALA described in § 5 cannot be 
used in a real time process due to too much high com-
putation times. So, even if it is possible to predict the 
future of the rolling conditions in one way or another, 
the command latency time is peremptory, at least for 
the current computational possibilities. Other methods 
must be found.
A first kind of approach is empirical conception of on-
line energy management laws. A great number of such 
methods can be found in the literature [Vaccaro et al., 
2004; Forgez et al., 2000; Wang et al., 2001; Van den 
Tillaart, 2000]. Among these, there are a lot use fuzzy 
logic and derived methods. Obviously all these laws 
have a trend towards the battery discharge increase 
when the state of charge rises, so as to keep state of 
charge in the range specified by the battery manufac-
turer. We may reproach the fact that these empirical 
laws are difficult to justify, and have to be precisely 
tuned to fit every particular case. Nevertheless they 
can entail good results. It is the case for thermostatic 
law used in [Delprat, 2002], for a full hybrid vehicle.
A second kind of approach is management laws based 
on the analysis of the energy flow in the powertrain. 
Let us quote Loss Minimization Strategy (LMS) 

Fig. 6  Influence of the electric motor maximum power on the consumption gain for the case of ICE downsizing
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and Equivalent Consumption Minimization Strategy 
(ECMS). The principle of LMS [Dauphin Tanguy, 
1999] is to choose the gearbox ratio and the power 
sharing that minimize the total losses in the power-
train. To be able to control battery state of charge, it is 
mandatory to introduce an extra constraint; otherwise 
the SOC would only decrease to minimize fuel con-
sumption. ECMS is based on the consideration that, in 
charge sustaining mode, the only way to keep the bat-
tery SOC is to use serial flow, or brakes regeneration. 
So, a consumption equivalent to the future charge is 
computed permanently. The goal is to minimize the 
sum of the instantaneous consumption and the future 
consumption.
The third kind of energy management laws are based 
on the global optimization results. Their implementa-
tion can be more or less direct:
(1)	 Rather direct if the vehicle model used in the glo-

bal optimization algorithm is sufficiently accurate 
(no instantaneous gearbox ratio shifting), and 
if the rolling conditions are known in advance. 
Then it is possible to keep in memory the opti-
mum command all along the route, or use pre-
established maps. This is the case for serial hybrid 
buses [Dubray, 2002];

(2)	 Rather indirect otherwise. It is possible to derive 
some algorithms from the original global optimi-
zation one [Delprat, 2002; Meaude Venot, 2001]. 
It is also possible to analyse the global optimiza-
tion results to derive some expert online manage-
ment laws.

In the scope of this paper, we will focus on a neural 
network approach. The goal is to learn KOALA global 
optimization results offline, and use this learning to 
control the vehicle online. So this approach is in the 
third category, and rather indirect.

6.2 Radial Basis Function - Dynamic Decay Adjust-
ment (RBF-DDA) network presentation
One family of neural networks is progressive net-
works, for which the number of neurons is not set be-
fore the learning phase. In this family, let us consider 
classification networks, rather than approximation 
ones. In this case, each influence zone corresponds to 
a given category for the output, each represented by 
a neuron in the hidden layer of the network. One of 
these neural networks is RBF-DDA one, that moreo-
ver performs Bayesian classification, that is to say it 
takes into account the probability of each considered 
input vector during the learning phase [Michael et al., 
1995]. In the frame of our study, we have used the 
open source software Stuttgart Neural Network Simu-
lator, which we adapted to show generalization scope 
equal to infinite. We also implement a pruning proce-

dure to suppress less significant hidden layer neurons.

6.3 Choice of the NN inputs and output
For the vehicle simulated in VEHLIB, the state vari-
ables are vehicle speed and battery SOC:
(1)	 The speed is regulated by the driver, simulated by 

a PID controller;
(2)	 The battery SOC, that has to be reproduced as 

close as possible to the SOC optimal curve com-
puted in global optimization tool KOALA.

The analysis of the global optimization results allows 
us to define the parameters that have the greatest in-
fluence on the battery SOC behaviour. So they are the 
inputs of our neural network:
(1)	 The state of charge difference between the begin-

ning and the end of the considered driving cycle 
during the learning phase (offline). During the 
use phase (online), we obviously cannot define 
what the end of the driving cycle is; so, to control 
the battery state of charge during online use, this 
input is taken as the opposite of the instantaneous 
state of charge;

(2)	 The instantaneous power at the wheels, that we 
have split into torque and speed parts. This allows 
us to obtain more information from the optimiza-
tion results;

(3)	 The auxiliaries power. If it is very high, at the ex-
treme it could prevent us from working in charge 
sustaining mode.

The output of the neural network has to allow the 
complete command of the hybrid powertrain. For the 
considered architecture, this output vector could be the 
gearbox ratio, the electric motor power, and the state 
of the ICE (on or off). Nevertheless, the gearbox ratio 
is computed instantaneously, and independently of the 
neural network, so as to maximize the efficiency of the 
ICE and EM. So the neural network will only furnish 
EM power to apply, and the state of the ICE. Note that 
the state of the clutches (opened or closed) can be eas-
ily deduced from the ICE state, independently of the 
neural network.

6.4 Learning example: optimal SOC curve reproduc-
tion for the NEDC cycle
The Figure 7 shows in light tone the KOALA SOC 
optimal curve on the NEDC driving schedule (zero 
SOC variation on the cycle). Here only wheel speed 
and torque are considered for the learning and use of 
the NN. The response of the neural network in the use 
phase is represented on the same figure in dark tone. 
Compared to the learning curve, there are several dif-
ferences:
(1)	 A large discharge is performed less before time 

equal to 100 s, that does not appear in the learn-
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ing. This is due to the fact that the NN performs a 
Bayesian classification during the learning phase, 
and so entails the most common class in use 
phase.

Indeed, the three arrows placed on the learning curve 
show three identical all-electric behaviour of the vehi-
cle, whereas the first (vertical arrow) is realized with 
the ICE working. So the all-electric mode appears to 
be more probable during the learning phase; then it is 
chosen during the use phase;
(1)	 The SOC gap between the neural net and the 

learning curve increases until the end of the driv-
ing schedule. This is due to the sampling in twen-
ty classes of the EM power;

(2)	 The brakes regeneration is larger in use phase 
than in learning phase. This is due to the SOC 
precision in KOALA during the global optimiza-
tion. Indeed the learning curve underestimates 
slightly the regeneration potential. Nevertheless, 
this approximation has been carefully studied: the 
corresponding consumption error compared to the 
real optimum is quite small, around 1 to 2 %.

The rise in consumption between learning and use 

Fig. 7  NEDC optimal SOC curve learning and corresponding answer

phases remains smaller than 3 %. This quantifies the 
consumption rise due to the fact that the driving cycle 
is no more known.
The learning has been extended to a larger learning 
base, and the use on unknown cycles (i.e. not in the 
learning base). Some results are presented in Table 2. 
The learning is performed on HYZEM driving sched-
ules (urban, road, and highway, see º§ 2), and the use 
on HYZEM urban and road, ARTEMIS urban and 
road. The average rise due to not known in advance 
driving cycle is about 5 %. For these figures, we keep 
the KOALA model.
The resulting number of neurons is several thousand.

7.  HARDWARE-IN-THE-LOOP EXPERIMEN-
TATION RESULTS
INRETS owns a dynamic test bench that allows to 
reduce the efforts required to test a hybrid vehicle. 
Some components are simulated by a built-in software 
(clutch 2, gearbox, differential), while others are phys-
ically on the bench (clutch 1, ICE, EM). The road re-
sistance and the aerodynamic drag are also simulated 
by the electric generator with a power of 120 kW. This 

Table 2  Consumption (L/100 km) increase due to unknown-in-advance driving cycle.

Use cycle                           Urban HYZ.       Road HYZ.       Urban ART.       Road ART.     

Optimal consumption               2.70                   3.10                   3.25                    2.91

Online consumption                 2.87                    3.29                   3.45                    3.03

Increase (%)                              6.3                      3.1                     6.2                       4.1
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approach enables us to [Jeanneret et al., 2004]:
(1)	 Muster our efforts to study the physic compo-

nents;
(2)	 Quickly adapt the simulated components to our 

requirements;
(3)	 Obtain a good reproducibility of the experiments.
The system is represented on Figure 8. An HIL ver-
sion of VEHLIB named VEHIL is used to control the 
bench.
For the time being, the consumption measured on the 
test bench with a neural network control is 3.6 l/100 
km on the NEDC driving schedule, so an improve-
ment of 14 % compared to the reference thermal 
vehicle (the conventional Renault Clio 1.5l dCi). The 
deterioration of the consumption gain from step two 
to step four of our approach (see º§ 3) is summarized 
in Table 3.

8.  CONCLUSION AND OUTLOOKS
We have described a global approach for the hybridi-

Fig. 8  INRETS’ HIL test bench

zation of a reference thermal vehicle, from the optimal 
sizing to the online control, which resulting consump-
tion must be as close as possible to the offline optimi-
zation results. The great advantage of our approach is 
its systematic aspect: by using global optimization in 
a derived way, we have shrunk the tuning procedure 
only to the minimum (essentially elaboration of com-
fort laws).
We currently study how it could be possible to reduce 
the number of neurons necessary to obtain a good 
performance improvement compared to the reference 
vehicle.
The obtained results on the test bench are satisfactory 
with regards to hybrid vehicle potential gain. This 
work is still in progress at INRETS.
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