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Abstract

This paper presents a new estimation approach of residual available capacity for lead acid batteries in electric
vehicles (EVs). The essence of this approach is to model lead acid batteries in EVs by using a neural network (NN)
with the specially defined output and the proposed inputs. The inputs are the battery surface temperature and the
discharged and regenerative capacity distribution to describe the discharge current profiles of lead acid batteries
during EV operations. The output is the state of available capacity (SOAC) representing battery residual available
capacity (BRAC). Then, SOACs of lead-acid batteries in EVs are experimentally investigated under different EV
discharge current profiles in the presence of various battery surface temperatures. The corresponding data are
recorded to train and verify the NN. The results indicate that the proposed NN can provide accurate and effective

BRAC estimation for lead-acid batteries in EVs.
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1. INTRODUCTION

In a world where environmental protection and energy
conservation are growing concerns, the research and
development of various technologies in electric vehicles
(EVs) is being actively conducted [Chan et al.., 2002
and Chan et al., 2004]. However, the application tech-
nology of EV batteries, namely the battery residual avail-
able capacity (BRAC) indicator in EVs, can not keep
pace with the development of other EV technologies.
The key problem arises from highly non-linear charac-
teristics of lead acid batteries in EVs, leading to the dif-
ficulty in the BRAC estimation and thus the driving range
estimation for EVs.

Within the past three decades, the BRAC estimation for
the lead-acid battery in EVs has been investigated by
using different approaches as summarized in [Chan et
al., 1999]. These approaches are based on (i). specific
gravity [Berndt, 1997], (ii). open circuit voltage [Zhu et
al., 2004 and Chiasson et al., 2005], (iii). impedance
[Tenno et al., 2002 and Karden et al., 2002], (iv). am-
pere-hour counter [Song et al., 1994; Karden et al., 1996;
Qi et al., 1996 and Caumont et al., 2000] and (v). neural
network model [Yamazaki et al., 1998]. For the first
three approaches, these battery parameters actually in-
dicate only the battery state of charge (SOC), rather than
the amount of ampere-hours that the battery can deliver.
In other words, the SOC only exhibits the battery dis-
charge capability. As to how much the BRAC can be
really discharged, it not only depends on the battery dis-
charge capability but also depends on the forthcoming

discharge current and temperature that the battery will
undergo during EV operations, and normally the later
factors will have stronger influence on the BRAC than
the former one. Although the higher the SOC the more
the BRAC can be discharged at the same discharge cur-
rent, they have no a quantitative relationship.

For the fourth approach, two methods have been adopted
thus far. One method is to approximate the battery avail-
able capacity (BAC) at the fully charged state as the
value C_ (¢) based on the average discharge current
[Song et al., 1994 and Karden et al., 1996]. Then, the
BRAC C (1) can be calculated by:

C.(1)=C,, —q) ey

q(ty= [1,(0)ar @)

where g(¢) is the discharged capacity, I (¢) is the instan-
taneous discharge current. The BRAC estimation by
using (1) will cause an error unless the discharge cur-
rent does not vary significantly. Table 1 shows a com-
parison of BACs under different EV discharge current
profiles at the same battery surface temperature of 25°C.

Table 1 Comparison of BACs under different EV dis-
charge current profiles

Profiles ADC (A) BAC (Ah)
FUDS 13.08 15.96
FHDS 13.11 25.05

ECE 13.21 13.05

IM10.15 13.12 15.43
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It can be found that although the average discharge cur-
rents (ADCs) of the US federal urban driving schedule
(FUDS), the US federal highway driving schedule
(FHDS), the European standard reference cycle (ECE)
and the Japanese mode 10.15 (JM10.15) are all approxi-
mately equal to 13 A (about the 3-hour discharge rate
for the rated capacity of C, = 40Ah), their BACs are
very different. The other method is to approximate the
BAC as the value C,_ based on the reference discharge
current [Qi et al., 1996 and Caumont et al., 2000], such
as the BAC for the 3-hour or 5-hour discharge rate, then
the BRAC can be calculated by:

C.()=Cy —a(l,)q() €))

where o(l)) is the corrective coefficient that is used to
calculate the equivalent discharged capacity if the dis-
charge current is either higher or lower than the refer-
ence discharge current. To determine the corrective co-
efficient, the battery has to be tested by one discharge
current either individually [Qi et al., 1996] or in combi-
nation with the reference discharge current [Caumont et
al., 2000] during the whole discharge period. However,
the corrective coefficients calculated from these specially
designed tests have ignored the influence of discharge
current profile on the BAC, leading to create a signifi-
cant error. Table 2 confirms this error even when the
battery is under 2-step discharge current profiles at the
same battery surface temperature of 25°C.

Table 2 Comparison of BACs under two-step discharge

current profiles

Profiles BAC(Ah)
8 A for first 3 h and 20 A for other
31.66
0.38h
20 A for first 0.38 h and 8 A for
33.00
other 3.17 h

Also, another drawback of this method is that the tem-
perature can hardly be formulated in the calculation of
the corrective coefficient because of the nonlinear rela-
tionship between the BAC and the temperature under
different discharge currents as shown in Figure 1.

For the fifth approach, one NN with three layers has
been proposed in [ Yamazaki et al., 1998]. This NN has
four neurons in the input layer to represent the battery
terminal voltage, discharge current, temperature and in-
ternal impedance, and ten neurons in the output layer to
indicate the SOC. The experimental data obtained from
a particular discharge current profile are used to train
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Fig. 1 Comparison of BACs under different temperatures

and verify the NN. The corresponding error is only of
10%. However, this NN has yet taken into account the
discharge current profile that has strong influence on
the BRAC estimation because the instantaneous termi-
nal battery terminal voltage and discharge current are
used as the inputs of the NN model to estimate the BRAC.
The purpose of this paper is to propose a NN based ap-
proach that can incorporate the effect of discharge cur-
rent profile into the BRAC estimation of the lead-acid
battery for EVs. To achieve the goal, two technical terms
are introduced. First, the state of available capacity
(SOACQ) p(¢) is specially defined to represent the BRAC,
which can be written as:

p()=1-q()/C, “4)

where C, refers to the BAC at the fully charged state for
a discharge current profile of the battery in EVs. Sec-
ond, the discharged and regenerative capacity distribu-
tion is proposed to describe the discharge current pro-
file for the SOAC estimation. Consequently, a NN with
these special inputs of the capacity distribution and the
battery surface temperature is applied to estimate the
SOAC (the output of the NN). Based on the experimen-
tation under various EV discharge current profiles at
different battery surface temperatures, the proposed NN
model for the SOAC is established and verified.

2. EXPERIMENTATION

The NN model for the SOAC estimation requires a lot
of experimental data as related to the battery in EV op-
erations. To obtain these data, a battery evaluation and
testing system is built. As shown in Figure 2, it consists
of five main parts, namely a programmable battery
charger, a programmable electronic load, a program-
mable temperature chamber, a power controller and a
computer control & data acquisition subsystem. With
this system, the battery can be tested under different



Journal of Asian Electric Vehicles, Volume 4, Number 1, June 2006

Power

2

supply
Controlled
temperature
chamber
Programmable > h Progran!mablc
charger electronic load

h S
onmnl—

I

I

Programmable & data acquisition subsystem

Fig. 2 Battery evaluation and testing system

charge and discharge currents at the predefined tempera-
ture.
As far as the EV battery concerned, the BAC for differ-
ent discharge current profiles is the key value to govern
the EV driving range. So, the discharge current profiles
that emulate the battery under various EV operating con-
ditions are designed for the BAC test:
= Constant current discharges, where each constant dis-
charge current lies between C/5 and C,/1, are used.
® Variable current discharges, where each discharge cur-
rent profile has an average value approximately equal
to C,/3, are adopted. They can be categorized into
two groups. One group is the random current dis-
charge, including the uniform distribution discharge
current with the range of C,/10 to C,/2 and the nor-
mal distribution discharge current with the standard
deviation of C,/8. Another group is the standard EV
driving cycle based current discharges, including the
FUDS, FHDS, ECE and IM10.15.
To carry out the BAC tests, the BAC is defined as the
quantity of electricity that can be delivered by the fully
charged battery at a certain discharge current profile and
battery surface temperature until the specified cutoff
voltage is reached. Mathematically, it can be written as:

C,=fV),1,0),T®) |7'(/)-l;1r ©)

where V(7) is the battery terminal voltage, 7(¢) is the tem-
perature, and ¥, is the specified cutoff voltage. With
different combinations of the discharge current profiles
and the temperatures ranging from 10°C to 40°C, 29 tests
are carried out on the battery evaluation and testing sys-
tem, where the battery at the fully charged state (p () =
1) is discharged until the specified cutoff voltage of
10.8V is reached (p (£) = 0). The experimental data are
automatically recorded. From the discharged capaci-
ties for all the tests, the BACs are obtained and the cor-
responding SOACs can then be calculated by using (4).

Figure 3 shows two examples of the 29 tests at the tem-
perature of 25°C, namely the discharge current profiles
corresponding to the FUDS and ECE.
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Fig. 3 Discharge current profiles of EV standard driv-
ing cycle (a) FUDS (b) ECE
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3. NN MODELLING

The purpose of the NN model for the SOAC estimation
is to describe the relationship between the SOAC and
its related parameters. Intuitively, the SOAC has a close
relationship with the instantaneous battery terminal volt-
age and discharge current. Due to this reason, they were
chosen as the inputs of the NN for the BRAC estimation
in [Yamazaki et al., 1998]. However, this is not as the
case as conceived. Figure 4 illustrates the relationship
between the SOAC and the battery terminal voltage,
where the discharge current profiles are based on the
FUDS and ECE.

It can be observed that battery terminal voltage changes
considerably as a result of the significant variation of
the discharge current, while the SOAC monotonously
decreases with the progress of discharging. These phe-
nomena demonstrate that the information embedded in
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Fig. 4 Relationship between SOAC and battery termi-
nal voltage (a) FUDS (b) ECE

the instantaneous battery terminal voltage and discharge
current can not offer direct contribution to the SOAC
estimation. In contrast, the BAC for the EV battery is
greatly influenced by the pattern of the discharge cur-
rent over time, namely the discharge current profile.
Based on the experimental data, the discharged and re-
generative capacity distribution is used to describe the
discharge current profile for the SOAC estimation of
lead acid batteries. As shown in Table 3, the discharged
and regenerative capacity distribution based on the lower
and upper current bounds of five current ranges, namely

Table 3 Lower and upper current bounds for discharged

and regenerative capacity distribution

I
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Fig. 5 NN for SOAC estimation

I'and I'" (i = 1,...,5), is adopted. As a result, the pro-

posed NN for the SOAC estimation is shown in Figure

5.

The NN consists of three layers. The first layer, namely

the input layer, has seven neurons:

= X (t) —discharged capacity for I/ <1, (1) <I",

= X, (¢) —discharged capacity for 1, < [, (£) < 1",

" X, (1) — discharged capacity for ) < 1, (£) <1,

= X, (1) — discharged capacity for I/ <1, (s) <1}

» X, () — discharged capacity for I/ < (£) <L

= X, () — regenerative capacity for regenerative cur-
rent;

® X (f)— temperature between 10°C and 40°C.

Considering the vector X(¢) = [X (1) X () X,(8) X,(D

X0 X () X(9)], the proposed NN can then be de-

scribed as a function that maps the input vector X(¢) to

the output vector p (¢), namely the SOAC at time ¢.

Mathematically, it can be described as:

P ()= W, F(y)+b’ (6)

_1-exp(=2y,)
Foo= I+exp(-2y,) O

where p, (¢) represents the value of the SOAC estima-
tion, 7 is the number of neurons in the hidden layer, W, (i
= 1,..., n) are the weights between the hidden layer and
the output layer, b ° is the bias at the output layer, and y,
(i=1,..., n) is the input to the / th neuron in the hidden
layer. It is given by:

7
¥y, :;WU.XJ(I)-FZ)/' (8)

where WU (i=1,..,nj=1,.,7)are the weights between
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the input layer and the hidden layer, and 6" (i = 1...., n)
are the biases at the hidden layer. To identify the neces-
sary number of hidden layer neurons, eight NN candi-
dates with n ranging from 8 to 15 are examined. Conse-
quently, the NN with eleven hidden layer neurons is cho-
sen because there is no significant improvement in the
estimation accuracy for » greater than 11.

The learning algorithm of the NN is a numerical pro-
cess that determines the connection strength, such as the
weights among the layers and the biases in the neurons.
In the learning process, the validation data set is included
for the improvement of the generality of the NN. Under
this condition, the learning process will be terminated
when the error function on the validation data set begins
to increase or the error function is smaller than the con-
vergence tolerance, whichever is reached first. Here,
the convergence tolerance is set at 10°. The error func-
tion E is defined as:

- éﬁ(pam— B (b))’ ©

where m is the number of the training data, p (k) is the
SOAC calculated from the experimental data for the &
th training data, and p, (k) is the corresponding value
of the SOAC estimated by the NN.

The parameters of this NN are optimised by the
Levenberg-Marquardt algorithm, one of the improved
back-propagation algorithms [Lin et al., 1996]. This
algorithm is a variation of Newton's method designed
for minimising functions that are sums of squares of other
nonlinear functions. So, it is well suited to minimise the
error function as defined in (9). With this algorithm, £
can be expressed as a function of the parameters of the
NN:

H={W,b0 W, 6" (= 1oem j=1,..7)  (10)

The optimum parameters of the NN can be obtained
through the following iterative process:

Hr+l:Hr_A;lgr (1])

where 4, = VE(H) ly-y and g, =VE(H)|,_, are
the Hessian matrix and the gradient vector of E with
respect to the r th iteration, respectively.

4. RESULTS

The data obtained from the experimentation of the pre-
vious section are used to train, validate and verify the
proposed NN model. Firstly, all data are normalised by
the following equation:

X'I (f) 4 jmin
Y _x U=L.? (12)

Jmax j min

X, ()=

where X (1) is the normalised value, )(mm and X”"m are
the max1mum and minimum values of X (t) respectively.
After normalisation, the data for each test are collected
together to form the whole data set with a total of 2505
samples, which is then grouped into the training, valida-
tion and testing data sets. The training data set is used
to train the NN, the validation data set is to improve the
generality of the NN while the testing data set is used to
verify the accuracy and effectiveness of the trained NN
for the SOAC estimation.

To allow for comparisons, the average relative percent-

age error (ARPE) is adopted. It is defined as:

zlpe(j) P 00% a3
NZT o e
where N is the number of the training data or the testing
data for each test, p, and p, refer to the estimated SOAC
from the trained NN and the actual SOAC calculated
from the experimental data, respectively. The ARPEs
for both the training data set and the testing data set for
each test are calculated. Figure 6 shows the estimated
SOAC and the actual SOAC for the training data set.
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Fig. 6 Comparison between actual SOAC and estimated
SOAC for training data set

It can be found that the SOAC estimation is of high ac-
curacy and the corresponding ARPE is only of 1.27%.

To testify the trained NN for the SOAC estimation ef-
fectively, the testing data for each test are used to verify
the trained NN. The results corresponding to the FUDS
and the ECE are of 1.31% and 1.59%, respectively
(shown in Figure 7), which illustrate that the proposed
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approach provides highly accurate estimation of the
SOAC for different discharge current profiles. It should
be noted that the ARPEs of the SOAC estimation for the
aforementioned 29 tests are within 2% as summarised
in Figure 8. This demonstrates that the proposed NN
offers a significant improvement over the ARPEs of 10%
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Fig. 7 Comparison between actual SOAC and estimated
SOAC for testing data set (a) FUDS (b) ECE
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Fig. 8 ARPEs for all 29 testing data sets
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in [Yamazaki et al., 1998], where the NNs were also
adopted.

5. CONCLUSIONS

In the application of a NN to the BRAC estimation of
the lead-acid battery for EVs, the advancements have
been made in the definition of the BRAC for the output
and the selection of inputs. Their advantages have been
confirmed by the experimental data of the lead-acid bat-
tery in the presence of various EV discharge current pro-
files at different temperatures, and can be summarised
below. The SOAC, which incorporates the effects of
the EV discharge current profile, is specially defined to
represent the BRAC of the lead-acid battery for EVs.
This definition logically follows from the fact that the
BAC is strongly influenced by the EV discharge current
profiles and this influence is neglected in the previous
approaches. As aresult, the SOAC can be used to esti-
mate the BRAC more accurately and effectively for EVs.
The specific inputs of the NN, namely the discharged
and regenerative capacity distribution, are used to de-
scribe the discharge current profile. These new inputs
offer the more general framework for the BRAC esti-
mation of the EV battery. The reason is that the number
of the current ranges and the values of the upper and
lower current bounds, which are used to construct the
capacity distribution, can be easily adjusted to adapt the
complexity of the BRAC estimation for different types
of EV batteries. For instance, if the experimental data
of other types of EV batteries are available, the number
of inputs and the hidden neurones of the NN for those
batteries may be changed; however, the structure of the
NN, the capacity distribution as the inputs and the algo-
rithm can remain the same.

The NN is an emerging tool to estimate the BRAC esti-
mation for EVs. Comparisons between the estimated
SOACs and the actual SOACs demonstrate that even a
simple three-layer NN can provide high accuracy of the
SOAC estimation with the ARPE less than 2% for all 29
testing data sets.
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