
45科学・技術研究　第 10 巻 1 号　2021 年Union Press

Original Article

A proposal of system to improve software reliability

Shinichi Funase (Faculty of Production Systems Engineering and Sciences, Komatsu University, shinichi.funase@komatsu-u.ac.jp)

Toshihiko Shimauchi (Faculty of Intercultural Communication, Komatsu University, toshihiko.shimauchi@komatsu-u.ac.jp)

Haruhiko Kimura (Faculty of Production Systems Engineering and Sciences, Komatsu University, haruhiko.kimura@komatsu-u.ac.jp)

Abstract
System failures include hardware failures and software failures. However, most of them are software failures. A redundant system
is usually used to improve the reliability of hardware, but even if the same redundant principle is applied to a software system,
each module (program) is a copy of the original, resulting in errors occurring in the same location without improving the reli-
ability. Additionally, although a hardware failure can be detected relatively easily by human five senses, a software failure is diffi-
cult to be detected except in extreme cases such as when the system is stopped or gets out of control. To address these issues,
this paper proposed a system that enables a robust redundancy for software. The proposed system monitors the control flow of
the software and when an irregular flow is detected, the control flow shifts to another module with same function but different
coding. The proposed redundant system is superior to existing single module system or other redundant systems in detecting
errors and improving software reliability.

Key words
software reliability, MTTF, software redundancy, program er-
ror, software failure

1. Introduction
As the system becomes more complex and sophisticated,

the impact of a failure on the system increases. Today, the
one of the most serious challenges in system failure is soft-
ware failures, against which various countermeasures have
been implemented. However, automatic correction of “pro-
gram error” is impossible and finding the cause of the error
is extremely time consuming, which always bothers not only
system engineers but also other people concerned with the
software. In general, the decrease in software reliability corre-
lates to two factors: the number of steps in the software and
its difficulty. Moreover, as the scale of the program increases,
detecting and correcting errors is rapidly increasing the diffi-
culty. However, the current state of software inspection is still
at the intermediate level, which relies on the intuition and
experience of system engineers.

Also, few researches have been done to establish this field
as a systematic discipline (Lyu, 1996; Operations Research
Society of Japan, 2000; Jung et al., 2004; Spinellis, 2006;
Yamada, 2011; Software Quality, 2020). In the programing
theory, mathematical proof methods have been conducted
to examine the correctness and halting problems. However,
they did not solve the general problem of reliability of large-
scale software systems (Floyd, 1967; Hetzel, 1973; Correctness,
2020). The goal in software reliability improvement is to mini-
mize the number of bugs. However, reducing bugs is difficult
and requires a huge amount of resources such as time and
money. Existing studies utilized various methods other than
bug reduction to improve software reliability. This paper uti-

lizes redundant method in improving software reliability.
In this paper, software failures and reliability are theoreti-

cally examined, followed by a proposal of a system that
improves the software reliability. This system uses methods
developed by Funase et al. (2020; 2021) in detecting software
failures. The system implements software redundancy using
modules of the same function created by different program-
mers and different methods, which improves software reli-
ability and mean time between failures (MTBF).

2. Software failure and reliability
2.1 Software failure

There is a serious discussion as to whether the word “failure”
is appropriate for software problems. Some argues the word
“error” is more appropriate than “failure”. An “error” is a defect
of a particular property or a static property, and a “failure” is
a state in which a normal hardware or software suddenly
reaches the end of its product life and becomes unusable.
Unlike hardware, software has no lifespan. Therefore, the ar-
gument goes, “errors” are more appropriate.

However, there are counter arguments against this inter-
pretation. If a thorough inspection is conducted, most of the
bugs (logical errors) that frequently appeared prior to the
inspection disappear, with occasional bugs appearing ran-
domly. If something that was normal suddenly stops working,
then it would be more appropriate to describe the situation
as “the program has failed” rather than “there is an error in
the program” (Hecht, 1975). The meaning of a general failure
is “a system, a device, or a part loses its specified function”. A
hardware failure can be defined as damage to tangible com-
ponents. However, in a software failure, there is no tangible
damage. Therefore, in this paper, the time when the specified
function is actually lost due to a functional defect or an algo-

46 Studies in Science and Technology, Volume 10, Number 1, 2021

rithm error is judged as the time when the software failure
occurs. In other words, when a program encounters a bug, a
software failure is assumed to occur (Figure 1).

2.2 Software reliability

Software reliability is a probability that the software cor-
rectly achieves the intended function for the expected period
under given operating conditions (Kimura and Oyabu, 2011).

Let R(t) = reliability and F(t) = unreliability, then

R(t) + F(t) = 1

Let f(t) = the derivative of F(t) over time. Then,

dF(t)
dt

= −
dR(t)

dt
f(t) =

f(t) is a failure density function and indicates the increase in
unreliability from time t per unit time Δt. This is the probabil-
ity that the software operates normally from time 0 to t and
fails within the time interval [t, t + Δt]. Therefore,

∞

0
f(t)dt = 1 ∫

Let B = the number of bugs, C = the number of checks, and H
= defect rate. Then H is calculated by

H = B / C

This equation shows the number of bugs per one check.
The value can be considered as a failure probability. The fail-
ure rate λ(t) is the failure rate per unit time Δt from the current
t. By replacing the defect rate with the failure probability,

f(t) = R(t) · λ(t)

and the following equation is obtained.

λ(t) =
f(t)
R(t)

=
dR(t)

dt
/ R(T) (1)

When Equation (1) is integrated,

t

0
λ(t)dt =∫–

t

0∫
1

R(t)
dR(t)

dt
dt =

t

0∫
1

R(t)
dR(t) = loge R(t)

Therefore,

R(t) = e
t

0
λ(t)dt∫–

 (2)

The failure rate curve of λ(t) is obtained by plotting the fail-
ure rate per unit time as shown in Figure 2. The curve consists
of a decreasing failure rate (DFR) and a constant failure rate
(CFR) curves. DFR is a type that is prone to failure in the initial
stage, after which failure rarely occurs. When the software
reaches this point, it faces with random errors whose prob-
ability is shown by CFR.

Specifically, in early DFR stage, bugs are frequently de-
tected in routines used widely in the program. However,
these bugs are easily detected and addressed in short span
of time. In CRF stage, on the other hand, bugs are detected at
routines less frequently used in a time tested program. These
bugs significantly impact the overall error rates of the pro-
gram and relatively difficult to detect and address. To reduce
the occurrence of such errors and to address swiftly when

Figure 1: Diagram of Software failure

C1 C2 C3 C4 Input

M
od

ul
e

No failure Failure Output

Element to be checked
Bug
Control �owCi

Figure 2: Failure rate curve

t

λ(t, t + Δt)

tb

λ(t)

ta

CFRDFR

(a) Failure rate per Δt (b) Failure rate curve

47科学・技術研究　第 10 巻 1号　2021 年

S. Funase et al.: A proposal of system to improve software reliability

one occurs, detailed attention is necessary in programming
phase. In execution phase, an automatic inspection system is
necessary for swift error detection and alternative route con-
struction.

In Figure 2 (b), tb signifies the completion of the program
as a marketable product. tb comes when certain amount
of time passes after the error curve reaches CFR stage at ta,
where steady state has been accomplished. Until tb is at-
tained, debugging is continuously implemented. Now, let us
consider the reliability of the program reaching this steady
state.

Let λ(t) in the steady state be λ.

λ (t ≧ ta) = λ

Equation (2) can be modified as

R(t) = e
t

0
λdt∫– = e –λt

Therefore, the mean time to failures (MTTF), which is the
average time between a failure and the next failure, can be
calculated as follows:

MTTF =
∞

0
tf(t)dt∫

=
∞

0
t∫ dt

1
λ

–
dR(t)

dt()
= [–tR(t)]

∞

0 +
∞

0
R(t)dt∫

=
∞

0
R(t)dt∫

=
∞

0∫ e –λt dt

e –λt–[]
∞

0

=

1
λ

=

3. Proposed system
3.1 Idea

Now, we will introduce some ideas for improving soft-
ware reliability. Generally, software redundancy is said to be
meaningless. This is because when making modules E1, E2, ...,
En, only E1 is original and the rest are back up (copies) of this
original module. In other words, if E1 fails, all E2, ..., En will fail.

But what if n-programmers create E1, E2, ..., En respectively?
The modules of E1, E2, ..., En have the same function, but each
has a different procedure and incorporates the individuality
and skills of each programmer. This is the same as the differ-
ence in the reliability of the hardware device. In a case that
only one programmer is available, this single programmer
can create different modules with the same functionality by
changing the method.

Based on these assumptions, this paper proposes the fol-

lowing system that applies the stand-by redundancy system.
The difference from the general standby redundancy system
is that the proposed system always starts from E1. In a general
standby redundant system, if E1 fails, E1 will never be used
again. In the proposed system, if a failure is found in E1, con-
trol shifts to the standby system until the process ends, after
which the program starts from E1 again. In detecting a failure
in E1, E2, ..., En, the method proposed by Funase et al. (2020;
2021) is used. Accuracy of failure detection of E1, E2, ..., En is
assumed to be 100 % and the reliability of the control shift
switch to be 1.

3.2 MTFF of proposed system
Figure 3 shows the Shannon diagram of the redundant

system proposed in this paper. In this system, if a failure is de-
tected in module Ej, control shifts to Ej+1. For example, if a fail-
ure is found in E1, control shifts to E2. When the control shifts
to the next module and the process completes, the program
starts from E1. Here, the state Si indicates that the number of
consecutive failures is i, and control is shifted to module Ei+1. λj
is the failure rate of Ej, which is the transition probability from
the state Sj-1 to Sj per unit time Δt.

Now, discrete Markov processes is used to calculate the
MTTF of the proposed system. In the transition probability
matrix P between states, the transition probability from the
state Si to the state Sj is placed in n–i+1 rows and n–j+1 col-
umns.

n
n–1
n–2
n–3

2
1
0

n
1
λn

0
0

0
0
0

n–1
0
0

λn-1

0

0
0
0

n–2
0
0
0

λn-2

0
0
0

3
0
0
0
0

λ3

0
0

2
0
0
0
0

0
λ2

0

1
0
0
0
0

0
0
λ1

0
0

1–λn

1–λn-1

1–λn-2

1–λ3

1–λ2

1–λ1

......

......

......

......

......

......

......

......

...

P =

P can be disassembled into

I
Z

O
G

P =

whereas,

I = [1], O = [00 ... 0]

Figure 3: Shannon diagram of the proposed system

S0 S1 S2 Sn-1 Sn

1– λ1 λ1 λ2 λ3

1– λ2
1– λ3

1– λn

λn-1 λn

1

48 Studies in Science and Technology, Volume 10, Number 1, 2021

0
λn-1

0

0
0

0
0

λn-2

0
0

0
0
0

λ2

0

0
0
0

0
λ1

1–λn

1–λn-1

1–λn-2

1–λ2

1–λ1

......

......

......

......

......

...G =

λn

0
0

0

...Z = ,

O is 1 row and n columns, Z is n rows and 1 column, and G
is n rows and n columns.

After the state transition from Sn-1 to Sn, the only thing left
is the transition from the state Sn to Sn. This means that if the
nth module fails, the system will shut down completely. To
consider only the state in which the system is operating, G is
examined in the transition matrix.

The average number of times rij, which signifies that the
state Sj appears when starting from the state Si, is calculated
by

Σrij = Pij(t)
∞

t = 0

Pij(t) is a probability of starting from the state Si and transi-
tioning to the state Sj after t units of time (Koyama, 1971). In
this paper, the state is assumed to change in unit time and
not to change until the first unit time is reached.

R aggregates all the possible combination of rij in single
equation.

R = E + G + G2 + . . .

whereas

E: State transition probability matrix at the start (unit matrix of
n-rows and n-columns)
Gt: State transition probability matrix after t unit time

R can be simplified as follows.

RG = G + G2 + G3 + . . .

R – RG = E
R (E – G) = E
R = E (E – G)-1 = (E– G)-1

Here, rij is an element of R’s n-i row and n-j column. The
MTTF of the proposed system is the sum of r00, r01, r02, ···, r0n-1
multiplied by the unit time. That is, if the average number
of times in which each state other than the state Sn appears
when starting from the state S0 is summed up, the average
number of transitions in operation is obtained.

[Example 1] For example, consider the case of n = 2.

1
λ2

0

0
0
λ1

0
1–λ2

1–λ1

P = ,
0
λ1

1–λ2

1–λ1
G = ,

1
–λ1

λ2–1
λ1

E – G =

(E – G)-1 =
λ1

λ1

1–λ2

1
1

λ1 λ2

Therefore,

MTTF =
λ1 + 1
λ1 λ2

3.3 Reliability of the proposed system
Although the discrete Markov process was used in the pre-

vious section, the proposed model is a continuous Markov
process in which the state transition occurs not at discrete
time points, but at random time points. It is a simple Markov
process in which the probability of each state transition is
always determined only from the current state regardless
of the time required for the previous transition or modes of
transition.

Let the system be in a state Si at a certain time t, and let
aijdt be the probability of transition to another state Sj during
the infinitesimal time dt.

When j = i + 1, then aij = λj

When j = 0, then aij = 1 – λi + 1

If dt is very small, the probability that two or more transi-
tions will occur in succession during this period is extremely
small. The maximum number of state transition during this
period is one.

Now, if the probability of being in a state Si at time t is ex-
pressed by Pi(t),

Pi (t + dt) = Pi(t) (1– Σj≠i aijdt) + Σj≠i Pi(t) aijdt (3)

Here,

Σ
j≠i

aijdt

indicates the probability of transition from state Si to any
other state within dt time.

Therefore,

Σ
j≠i

aijdt1 –

is the probability that no transition will occur.
Now, let us consider a model with n = 2. Figure 4 shows the

transition probability per dt time between the states.
The following equation can be obtained from equation (3).

49科学・技術研究　第 10 巻 1号　2021 年

S. Funase et al.: A proposal of system to improve software reliability

P0(t + dt) = P0(t)(1 – λ1dt) + P1(t)(1 – λ2) dt (4)
P1(t + dt) = P1(t){1 – (1 – λ2)dt – λ2dt} + P0(t) λ1dt (5)
P2(t + dt) = P2(t)(1 – 0) + P1(t) λ2dt (6)

However, P0(0) = 1, P1(0) = 0, P2(0) = 0

From equation (4),

P0(t + dt) - P0(t) = –P0(t)λ1dt + P1(t)(1 – λ2) dt
P0‘(t) = – λ1P0(t) + P1(t)(1 – λ2)

(7)

From equation (5),
P1(t + dt) – P1(t) = –P1(t)(1 – λ2)dt – P1(t)λ2dt + P0(t)λ1dt
P1‘(t) = –P1(t) (1 – λ2) – P1(t)λ2 + P0(t)λ1

= –P1(t) + λ2P1(t) – P1(t)λ2 + P0(t)λ1

= –P1(t) + P0(t)λ1

(8)

From equation (6),
P2(t + dt) – P2(t) = P1(t)λ2dt
P2‘(t) = P1(t)λ2

(9)

Using the Laplace transform, P2(t) can be obtained. The La-
place transform of Pi(t) is expressed as follows:

L[Pi(t)] = gi(S)

By applying the Laplace transform to the equations (7), (8),
and (9),

{ Sg0(S) – P0(0) = Sg0(S) – 1 = –λ1g0(S) + g1(S)(1– λ2)
Sg1(S) – P1(0) = Sg1(S) = –g1(S) + g0(S)λ1

Sg2(S) – P2(0) = Sg2(S) = g1(S)λ2

Therefore,

g2(S) =
λ1λ2

S{S2 + (λ1+ 1)S + λ1λ2}
=

λ1λ2

S(S – α)(S – β)

From this equation,

α =

β =

(–λ1 – 1 +
1
2

1
2

λ1
2 + 2λ1 + 1 – 4λ1λ2

)

(–λ1 – 1 – λ1
2 + 2λ1 + 1 – 4λ1λ2

)

are obtained. By applying Laplace inversion to g2(S),

P2(t) =
λ1λ2

S(S – α)
eSt

S = β

+
λ1λ2

S(S – β)
eSt

S = α

+
λ1λ2

(S – α) (S – β)
eSt

S = 0

=
λ1λ2

αβ(α – β)
{–αeβt + βeαt + α – β}

is obtained and

λ1λ2

αβ(α – β)
{–αeβt + βeαt + α – β}R(t) = 1 – P2(t) = (10)

If

A =

B =

λ1
2 + 2λ1 + 1 – 4λ1λ2

)

–λ1 – 1

then, Equation (10) can be expressed as follows.

R(t) =
1

2A
(B + A)e

1
2

(B – A)t
– (B – A)e

1
2

(B + A)t{ }
Therefore,

MTTF =
∞

0
R(t)dt∫ =

–4B
B2 – A2 =

λ1 + 1
λ1λ2

This value matches with the MTTF obtained in the discrete
Markov process. Table 1 shows a comparison of the reliability
and MTTF between single module system and proposed dual
module system (n = 2).

[Example 2] The single module system and the proposed dual
module system are compared to calculate respective MTTF
and reliability for working 10 consecutive days without errors.
The failure rate of each module is assumed to be 0.1 per day.

From Table 1, the MTTFs of the single module and the dual
module are respectively 10 days and 110 days. The reliabilities
for working 10 consecutive days with the single module and
dual modules are respectively 0.367879 and 0.920136.

[Example 3] Table 2 shows the MTTF of the proposed system
with the number of modules n being from 2 to 9. The failure
rate of each module is assumed to be 0.1 per day.

4. Conclusion
In this paper, a software failure is assumed to occur when

a program encounters a bug. The paper proposed a system
which detects a software failure based on the control flow
and shifts the flow to another module with same function
but programmed in different manner. The system with the re-
dundancy improved the reliability of the program and MTTR.
As for performance, as shown in Example 2, while the MTTF

Figure 4: Shannon diagram showing the transition probability
of each state per dt time

1– λ1dt λ1dt

10 2
1

λ1dt

(1– λ2)dt

1– λ1dt

50 Studies in Science and Technology, Volume 10, Number 1, 2021

for a single module was 10 days, that for the proposed sys-
tem with 2 modules was 110 days. In addition, the reliability
of a system that functioned normally for 10 days was 0.367879
for a single module, while that of the proposed system with 2
modules significantly improved to 0.920136. As the number
of the module increased, MTTF improved by approximately
10 folds as shown in Example 3. This proportional increase
will not continue since increase in the number of modules
leads to the increase in similar function modules, which has
almost no positive effect for robust redundancy.

Although hardware and software failures have different
characteristics such as damage tangibility and failure detec-
tion difficulty, applying a hardware redundancy system to a
software redundancy system has several implications. First, let
us consider a parallel redundancy system. In this redundant
system, control shifts to n devices at the same time, and if at
least one device is in a normal state, control ends without
any problem. In the case of software, the device is a module,
but it is often difficult to determine whether a module is op-
erating normally. Therefore, software redundancy in parallel
redundancy is not possible.

Secondly, let us consider a stand-by redundancy system.
In this redundant system, when the main operating device

(first device) fails, a standby spare device acts as a substitute.
The proposed system in this paper is similar to this standby
redundant system with one significant difference: while the
conventional standby redundant system never uses the failed
device again, the proposed system reuses the module.

Finally, let us consider the m out of n redundancy system.
This redundant system functions normally if the number of
failed modules is m or less. A typical example is a 2 out of 4
redundant system used for a four-engined aircraft which can
operate safely even if two engines fail. Even with this redun-
dant system for a software, it is difficult to judge whether a
module is functioning normally. This paper used a method
developed by Funase et al. (Funase et al., 2020; 2021) which
can detect a module malfunction with the accuracy of 80 %
based on the control flow. The m out of n redundant system
can also be used as a majority-decision redundant system. It
is assumed that each module is created in a different way as
in this paper. In other words, the result of the module with
the same result or the frequency of the same state is adopted.
However, many computers must be operated in parallel, and
it takes a lot of time and effort to check each status.

From the above, it can be said that the software redundan-
cy system proposed in this paper is superior to existing single
module system or other redundant systems in detecting er-
rors and improving software reliability.

References
Correctness (2020). Wikipedia. accessed on December 20,

2020. https://en.wikipedia.org/wiki/Correctness_(comput-
er_science)

Funase, S., Simauchi, T., and Kimura, H. (2020). A proposal for
run-time checks on command execution order of software
program. Studies in Science and Technology, Vol. 9, No. 2,
149-152.

Funase, S., Simauchi, T., and Kimura, H. (2021). A theoretical
analysis of automatic inspection of the control flow of com-

Number of modules (n) MTTF (days)
2 110.0
3 1110.0
4 11109.8
5 111125.0
6 1112920.0
7 10652200.0
8 74565400.0
9 149131000.0

Table 2: MTTF of the proposed system

Note: The failure rate of each module is 0.1
per day.

Table 1: Comparison of reliability and MTTF between single module system and proposed dual module system

System con�guration Reliability MTTF

Signal module

Proposed system

whereas

λ : Failure rate
λ

λ1

λ2

1
2A

(B + A)e
1
2

(B – A)t
– (B – A)e

1
2

(B + A)t{ }

A =

B =
λ1

2 + 2λ1 + 1 – 4λ1λ2

–λ1 – 1

e–λt

1
λ

λ1 + 1
λ1λ2

λi : Failure rate

51科学・技術研究　第 10 巻 1号　2021 年

S. Funase et al.: A proposal of system to improve software reliability

puter programs. Studies in Science and Technology, Vol. 10,
No. 1, to be published.

Floyd, R. W. (1967). Nondeterministic algorithms. Journal of
the ACM, Vol. 14, No. 4, 636-644.

Hecht, H. (1975). Can software benefit from hardware experi-
ence? Proceedings of Annual Reliability and Maintainability
Symposium.

Hetzel, W. C. (1973). Program test methods. Prentice-Hall.
Jung, H-W., Kim, S-G., and Chung, C-S. (2004). Measuring soft-

ware product quality: A survey of ISO/IEC 9126. IEEE Soft-
ware, Vol. 21, No. 5, 10-13.

Kimura, H. and Oyabu, T. (2011). Introduction to information
science. Kyoritsu Shuppan. (in Japanese)

Koyama, A. (1971). Markov processes and related fields. Toyo
Keizai. (in Japanese)

Lyu, M. R. (ed.) (1996). Handbook of software reliability engi-
neering. McGraw Hill.

Operations Research Society of Japan (ed.) (2000). Software
reliability. Dictionary of Terminology. JUSE Press. (in Japa-
nese)

Software Quality (2020). Wikipedia. accessed on December
20, 2020. https://en.wikipedia.org/wiki/Software_quality.

Spinellis, D. (2006). Code quality: The open source perspec-
tive. Addison Wesley.

Yamada, S. (2011). Introduction to software reliability. Kyoritsu
Shuppan. (in Japanese)

(Received: May 14, 2021; Accepted: June 5, 2021)

