
75科学・技術研究　第 10 巻 1 号　2021 年Union Press

Research Letter

A theoretical analysis of automatic inspection of the control �ow of computer programs

Shinichi Funase (Faculty of Production Systems Engineering and Sciences, Komatsu University, shinichi.funase@komatsu-u.ac.jp)

Toshihiko Shimauchi (Faculty of Intercultural Communication, Komatsu University, toshihiko.shimauchi@komatsu-u.ac.jp)

Haruhiko Kimura (Faculty of Production Systems Engineering and Sciences, Komatsu University, haruhiko.kimura@komatsu-u.ac.jp)

Abstract
The authors have proposed an automated inspection on the control flow of computer programs, but its theoretical analysis has
not been reported by other researchers yet. The automatic inspection on the control flow of a computer program is to check
whether instructions are executed in intended order while executing the target program. The authors developed this automatic
inspection by tracing the inconsistency between the execution of the target program and the general flowchart while using
an interpreter to trace the flow. In this paper, after theoretically confirming each process of the automatic inspection algorithm,
the following three points are discussed regarding the equivalence of the flow chart control flow and the program control flow.
(1) The number of control flow paths in the flowchart is shown to be less than or equal to the number of program control flow
paths when the program is coded correctly. (2) The necessary and sufficient condition for the input set selecting the control
flow path of target-P which does not satisfy any control flow in GF to become empty set is that the macro statement becomes
allocation statement for any input value, provided that the branches described in the flowchart are correctly coded. 3) we dis-
cuss the equivalence of the flow chart control flow and the program control flow.

Key words
software testing, program inspection, control flow, general
flow chart, detailed flow chart

1. Introduction
The “inspection of control flow” (Kimura, 1976) in this study

is an inspection whether instruction is executed in intended
order while executing the target program (hereafter target-
P). Target-P for this inspection system is written in assembler
language and its instruction execution order is determined
by input data. Normally, target-P is an object program writ-
ten in machine language expressed in binary codes. Since
directly handling machine language is difficult, the assembler
language, which has a one-to-one correspondence with ma-
chine language and is expressed by alphanumeric characters
and symbols, was used for target-P in this study.

The authors proposed an automatic inspection of the con-
trol flow (Funase et al., 2020), but the theoretical analysis has
not yet been done. The proposed automatic inspection is
executed while decoding each instruction of target-P by an
interpreter, and the control flow is inspected while checking
absolute address and label of each branch instruction. The
control flows of target-P and its general flowchart are deter-
mined by input data. In addition, the control flow of the gen-
eral flowchart is treated as text, and confirmation whether
there is any contradiction in the control flow of target-P is
conducted while it is being executed. A contradiction de-
tected shows an existence of a logical error.

This study conducts a theoretical analysis on the automatic
inspection to prove the equivalence of the control flow of
the general flowchart and that of target-P (Myers, 1979; Na-

tional Institute of Standards and Technology, 1990; IT media,
2011; TTSP, 2014; International Software Testing Qualifications
Board, 2018; Japan Software Testing Qualifications Board,
2018; Software testing, 2020; TOPPERS, n.d.).

2. Overview of the automated inspection
The automatic inspection proposed in Funase et al. (2020)

uses an interpreter to execute target-P and at the same time
trace it to check whether it passes through the intended
branch point. The outline is shown in Figure 1. A general flow
chart (GF), written in documentation or mathematical formu-
las, is labeled with intended branch points and destinations
and provided as a text-based flow chart. A graph containing
only nodes and arcs of GF’s branch points is called a general
flowchart graph (GFG). In GFG, GF’s labels are attached to its
branch point nodes, and destination labels are attached to
the end point (node) of the arc, which is a directed line con-
necting the nodes of the start point and the end point. In this
study, GFG is referred to as the “test text (correct answer infor-
mation)”.

Next, consider target-P coded with GF and a detailed flow-
chart (DF) corresponding with target-P. DF is a flowchart in
which each instruction is assigned to one block and the in-
struction is written in the block as it is. In the example shown
in Figure 1, three types of errors are assumed to occur during
coding. A detailed flow chart graph (DFG) is a graph similar
to GFG and describes these logical errors. The same label is
used in the corresponding place for target-P, DF, GFG, DFG
and GF. The automatic inspection proposed in Funase et al.
(2020) checks whether the DFG’s control flow satisfies the
GFG’s control flow, both of which determined by input data.

76 Studies in Science and Technology, Volume 10, Number 1, 2021

“Satisfy” means the both flows do not contradict with each
other. In the example of Figure 1, the first error is detected
by reaching N1 without passing through R1. The second error
is detected by coming out of the absolute address in target-
P. The third error is determined to have fallen into an infinite
loop by repeating the same series of paths multiple times for
a predetermined threshold time.

3. Theoretical analysis of the automated inspection algo-
rithm
3.1 Input data and statement

The control flow of GF is determined by input data, but the
control flow of the corresponding target-P is not limited to
one. Although description in GF can be not detailed, it must
be expressed strictly in target-P. Also, there are many cases
where there are multiple control flows in target-P.

In this study, it is assumed that target-P has m input vari-
ables χ1, χ2, ..., χm. The set of data which χi can take is described
as D (χi). ID is a set of possible values of input data (n-term set)
and it is described as

ID = D(χ1) × D(χ2) × · · · × D(χm)

where × represents a direct product.
A subset of ID is PIDt (t = 1, 2, · · ·, s) which selects the t-th

control flow of target-P. However, for any two subsets,

PIDi PIDj = φ

and

ID = PID1 PID2 · · · PIDs

GIDj is input data to select the j-th flow of GF and it is de-
scribed as

GIDj = PIDj1 PIDj2 · · · PIDje

These ID subsets may contain control flows that cause logi-
cal errors.

In this study, the assembler language is composed of the
following instructions:

•	 Start statement
•	 Assignment statement
•	 Test statement
•	 Macro statement
•	 Stop statement

Test statements and macro statements function as branch
instructions. Although macro statements can be test state-
ments or assignment statements, they are usually used as
the latter. The former occurs when target-P crashed and
unintended data is written in the areas of macro statement.
The data written in this way may become test statement. The
other instructions are statements described in Manna (1974).

3.2 Control flow
Normally, the control flow of a program indicates the execu-

tion order of instructions by a series of addresses, and is a to-
tally ordered set of addresses representing the execution order
of instructions from the start point to the endpoint. This study
focuses on the branch point (branch instruction). The control
flow is described as a totally ordered set of the pairs between
labels attached to the branch point (branch instruction) and
those attached to the instruction to be executed after the
branch point (branch instruction). Some labels are described as
absolute addresses to shorten the description of control flow.

[Definition 1] Path Cj of j-th control flow in GFG is represent-
ed by a totally ordered set of labels from start to end points
as follows:

Cj = ((Rj1, Nj1), (Rj2, Nj2), · · ·, (Rjej, Njej))
for j = 1,2, · · ·, d1

where
Rji represents a label attached to a branch point.
Nji represents a label attached to the beginning of the pro-

cess to be executed after Rji labeled branch point.

Figure 1: Overview of the inspection

Target Program P
(Assembler Language)

Checker (human) is in charge

The calculator is in charge

error

Address out of
Target program

N1

endless loop

error

Detailed flowchart (DF)
(Assume there were three errors when coding)

N2

R1

N1 N2

R1

General flowchart (GF)

N2

R1

General flowchart graph (GFG)

N1

N0

N7 N8

comparison

N2

R2

Detailed flowchart graph (GFG)

N1

N0

N7

N4

R1

R0

N5

N6
out of Target

program

N3

77科学・技術研究　第 10 巻 1号　2021 年

S. Funase et al.: A theoretical analysis of automatic inspection of the control �ow of computer programs

ej represents the number of branch points in path Cj.

[Definition 2] Path Ht of the t-th control flow in target-P is
represented by a totally ordered set of absolute addresses
from start to the end points as follows:

Ht = ((R*t1, N*t1), (R*t2, N*t2), · · ·, (R*tft, N*tft))
for t = 1,2, · · ·, d2

where
R*ti represents an absolute address where the branch in-

struction is stored.
N*ti represents an absolute address which stores the in-

struction to be executed after the instruction in the absolute
address R*ti.

ft represents the number of branch instructions in path Ht.

[Definition 3] The absolute address storing the instruction is
obtained from the label attached to the instruction of target-
P to create a correspondence table between the label and
the absolute address. By using this correspondence table, the
label of Cj is changed to the absolute address to create path
C*j, which is represented by a totally ordered set of absolute
addresses as follows:

C*j = ((R+
j1, N

+
j1), (R

+
j2, N

+
j2), · · ·, (R

+
jej, N

+
jej))

for j = 1,2, · · ·, d1

where
R+

ji represents an absolute address where the instruction
with the corresponding Rji of target-P is stored.

N+
ji represents an absolute address where the instruction

with the corresponding Nji of target-P is stored.

[Definition 4] Control symbol * is inserted at the start and
end of C*j, and between (R+

ji, N
+

ji) and (R+
ji + 1, N

+
ji + 1) for each

i. The control flow path C’j with endmark@ at the end is ex-
pressed as follows:

C’j = (*, (R+
j1, N

+
j1), *, (R+

j2, N
+

j2), *, · · ·, *, (R+
jej, N

+
jej), *, @)

for j = 1,2, · · ·, d1

3.3 Automated inspection algorithm
The algorithm of the automatic inspection proposed by

Funase et al. (2020) is outlined in an error detection process
shown in Figure 2.

<1> First, a GF is given, and target-P is coded according to
the GF.

<2> Next, a GFG is created from the GF.
<3> Cj is selected from input data.
<4> C*j is created by changing the labels of Cj to absolute

addresses according to target-P.
<5> The operations of <2>, <3>, and <4> are automated

so that C*j is determined by input data.
<6> Text C’j is created to check whether target-P follows

the intended node path.
<7> Target-P is controlled by DF.
<8> DFG is created from DF.
<9> The flow of DFG is controlled from input data.
<10> Upon execution, Ht is selected according to the value

of input data.
<11> A check is conducted to see whether Ht satisfies C’j.
<12> Check steps in <11> is a learning system, where text

information increases proportional to the number of checks.
This allows detailed checks on the same control flow when
the same PIDt input data is taken. C“j is the text for a complete
check to see if it passes through the same control flow.

<13> If the same data in PIDt is input to subsets PID1, PID2,
· · ·, PIDs, complete confirmation can be conducted to see if it
passes same control flow.

4. Equivalence of flow chart control flow and program
control flow
4.1 The number of the control flow path

Proposition (A): The number d1 of the control flow path set
{Cj} of GF is equal to or less than the number d2 of the control
flow path set {Ht} of target-P when it is correctly coded.

The reason is as follows. Since target-P codes GF correctly,
the set {Ht} satisfies the control flow path set {C*j}, in which
labels of the set {Cj} are changed to absolute addresses. Here,
“satisfy” means that for any C*j, there exists an Ht which con-
tains the same totally ordered set as the path. In other words,
for each C*j, there is always an Ht with the same absolute
address sequence on the path. In short, there is no contradic-
tion. From this, if there is no macro statement in target-P, the
branch point is only the test statement, and

{C*j| j = 1,2, ···, d1} ≡ {Ht | t = 1,2, · · ·, d2}

Therefore,
d1 = d2

If target-P contains macro statements, these may become
branch points, so the number of control flow path sets {Ht}
increases. Also, if target-P contains a branch point not listed
in GF, the number of Ht increases. From these considerations,
proposition (A) holds true.

4.2 Condition for input set to become empty set
Proposition (B): The necessary and sufficient condition

for the input set selecting the control flow path of target-
P which does not satisfy any control flow in GF to become
empty set is that the macro statement becomes allocation

78 Studies in Science and Technology, Volume 10, Number 1, 2021

statement for any input value. However, it is assumed that the
branches described in GF are coded correctly.

The reason is as follows. When there is no control flow of
target-P that does not satisfy the control flow of the general
flowchart, that is, when coding is performed correctly, a macro
statement becomes an allocation statement regardless of the
value of the input data. This is because a test statement is un-
intended by the programmer and is a source of error. On the
contrary, when a macro statement becomes an allocation state-
ment regardless of the value of the input data, since the branch
described in GF is assumed to be coded correctly, there exists a
control flow of target which satisfies the control flow of GF.

Therefore, proposition (B) holds true.

4.3 The equivalence of the control flows
Finally, the equivalence of the control flow of GF and that

of target-P is considered. In this case, the texts to be com-
pared are GF and {GIDj}. Target-P and DF have a one-to-one
correspondence and are equivalent, but GF and target-P are
not. If coded correctly, target-P can be generated from GF
(GF→target-P). But opposite is not true and GF cannot be
uniquely created from target-P because GF depends on how
it is expressed and its degree of outline.

For each data, if DFG, which is generated from target-P,
satisfies GFG, which is generated from GF, that is, when there
is no contradiction, DFG and GFG are judged be equivalent in
terms of control flow in this study. In this automatic inspec-
tion, this equivalence is inspected, and an error is detected
by finding a contradiction. There are three types of errors that
can be detected as shown in Figure 1. Errors are detected

by tracing the control flow at runtime to check whether the
above three types of errors have occurred. However, to show
that there are no errors related to the control flow, it is neces-
sary to try all the data, which is practically impossible.

5. Conclusion
This automatic inspection system proposed in Funase et.al.

(2020) is developed by inputting GF and {GIDj} as text and by
checking whether the DFG which is generated from target-
P satisfies the GFG which is generated from GF. Since this
automatic inspection system generally cannot test all the
data of each GIDj, it cannot be shown that there is no error in
the control flow. However, an error in the control flow for the
input data being executed can be detected. This system is
very effective because users are more interested in the results
of the process currently being executed than in the future re-
sult. As such, this system is best fitted to detect errors related
to control flow and Funase et al. (2020) reports these errors
accounted for approximately 80 % of all errors.

References
Funase, S., Shimauchi, T., and Kimura, H. (2020). A proposal for

run-time checks on command execution order of software
program. Studies in Science and Technology, Vol. 9, No. 2,
149-152.

International Software Testing Qualifications Board (2018).
Certified tester foundation level syllabus 2018v3-1. https://
castb.org/wp-content/uploads/2020/01/ISTQB-CTFL_Syl-
labus_2018_V3.1.pdf. Accessed on December 10, 2020.

IT media (2011). coverage criteria. Information system glossary.
http://www.itmedia.co.jp/im/articles/1111/07/news142.
html. Accessed on December 10, 2020. (in Japanese)

Japan Software Testing Qualifications Board (2018). Founda-
tion level syllabus, version 2018.J03. http://jstqb.jp/syllabus.
html#syllabus_foundation. Accessed on December 10,
2020.

Kimura, H. (1976). A study of software reliability. Master thesis
of Tohoku University. (in Japanese)

Manna, Z. (1974). Mathematical theory of computation. Mc-
Graw-Hill.

Myers, G. J. (1979). The art of software testing. John Wiley and
Sons, New York.

National Institute of Standards and Technology (1990).
PCTS:151-2, POSIX Test Suite (POSIX 1990 version). http://
www.itl.nist.gov/div897/ctg/posix_form.htm). Accessed on
December 10, 2020.

Software testing (2020). Wikipedia. Accessed on December
10, 2020.

TOPPERS (n.d.). TTSP. https://www.toppers.jp/ttsp.html. Ac-
cessed on December 10, 2020. (in Japanese)

(Received: January 29, 2021; Accepted: March 11, 2021)

Figure 2: Error detection process

Working with checker

Working with calculator

DF
P

Cj

C*J

GFG

GF

DFG

input
data

Ht

C’J

C’’J

<7>

<4>

<4>

<3>

<1>

<2>

<8>

<10>
<9>

<3>

<5>

<6> <11>

<12>

<13>

Learning system

