
79科学・技術研究　第 10 巻 1 号　2021 年Union Press

Technical Report

Elementary approach on the prediction of next material composition using AI 
technology:
Improvement of characteristic by changing two components

Daisuke Tanaka (Department of Mechanical Engineering, National Institute of Technology (KOSEN), Niihama College, d.tanaka@niihama-nct.ac.jp)

Susumu Nakayama (Department of Applied Chemistry and Biotechnology, National Institute of Technology (KOSEN), Niihama College, s.nakayama@niihama-nct.ac.jp)

Abstract
This study aims to identify the factors affecting the characteristics of samples, such as photoluminescence intensities, and iden-
tify the relationship between performance improvement and the search parameters for material composition. Subsequently, 
we optimize the experimental conditions to provide the maximum characteristic value. First, the process parameters are intro-
duced as input values to the artificial intelligence (AI)-based model; then, we obtain a generalized equation to establish rela-
tionship between the characteristics of the samples and the process parameters. Subsequently, the new samples suitable for 
determining an accurate model and optimizing the process parameters are calculated and recommended to the user. Finally, 
the obtained formula is optimized, and the optimum values for achieving maximum characteristic are determined. Experimen-
tal validation using the AI program developed in this study found that the two components (x, y) that provide the strongest PL 
intensity in the Srx(La10–x–yEuy)(SiO4)6O3–x/2 (x=2–6, y=0.6–1.2) red-emitting phosphors can be easily estimated from approximate-
ly 10 initial data points.
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1.  Introduction
Nowadays, the development of materials using artificial 

intelligence technology is being actively implemented; 
moreover, the effectiveness of this method has been widely 
demonstrated in the literature. Material Informatics (MI) is the 
cross-disciplinary field that combines material science and 
artificial intelligence, which has been adopted across the in-
dustrial world. Machine learning methods, especially Bayesian 
optimization (BO) methods, are widely used in the field of MI. 
The BO method can be regarded as an experimental design 
method. In recent years, several studies have reported the ef-
fectiveness of BO methods. For example, Sakurai et al. (2019) 
found aperiodic multilayered metamaterials exhibiting high 
and sharp emissivity from over 8 billion candidates. The BO 
method reduces the calculation cost of electromagnetic sim-
ulations to 168 million patterns (which is approximately 2% of 
the total patterns needed). Hou et al. (2019) also reported the 
discovery of an optimal composition of aluminum, iron, and 
silicon for thermoelectric properties in a mid-temperature 
range with the assistance of BO methods. Sumita et al. (2018) 
solved the problem wherein the ordinal AI model automati-
cally designs deviating structures of organic molecules (i.e., 
the structures that do not exist in nature). The structures 
designed by the new AI model were chemically stable and 
exhibited desired properties. Further, Shimizu et al. (2020) 
developed a robot system that autonomously searches for 
new materials by combining machines that iteratively per-

form machine learning and experimental operations; they 
successfully minimized the electrical resistance of titanium 
dioxide thin films. Their proposed system achieved 10-fold 
experimental efficiency relative to the conventional method; 
moreover, it led to the development of a fully automated 
and autonomous research style in which robot systems and 
humans collaborate. However, it is assumed that applying AI 
methods to a new field could be difficult for non-specialists in 
AI technology. In this study, we develop an open-access web 
application that enables non-specialists of AI in the material 
science field to use BO methods. The application provides the 
next set of experimental conditions to find the optimal struc-
ture of chemical combinations from user input, such as the 
current experimental conditions and corresponding evalua-
tions (e.g., intensity, emissivity, and calorific value). This report 
demonstrates the effectiveness of the application basis the 
simulation results obtained from actual experimental data.

2.  Methodology and materials
2.1  Bayesian optimization

Bayesian optimization is a commonly used method to ob-
tain the optimal input that maximizes a function. This prob-
lem can be expressed as follows:

The input x  Rd is a combination of d values for an experi-
mental setting, and the objective function f(x) is an unknown 
continuous function. For example, in the development of lu-
minescent materials, the values involved in the composition 
would be x, and the resulting intensity of the material would 

max f (x).
x
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be f(x). However, the relationship between the composition 
and the intensity is difficult to express explicitly in mathe-
matical form. Therefore, we find the relationship f(x) from the 
experimental data.

We model the function f(x) using Gaussian process regres-
sion. This method enables us to predict the output uncer-
tainty. The top panel in Figure 1 shows an example of the 
Gaussian process regression model with one-dimensional 
input x. The experimental data (xk, f(xk)) used to obtain this 
model are (0.1, –0.1), (0.2, 0.3), and (0.8, –0.1), which are indi-
cated by filled circles. The solid line indicates the predictive 
mean (regarded as the predicted value of f(x)), and the gray-
colored area indicates the predictive variance, which implies 
the uncertainty of the prediction. As the experimental data 
are not obtained at around x=0.5 and x>0.8, the uncertainty 
is relatively larger in the results. Note that the objective here 
is to obtain the optimal input that maximizes the function. 
Therefore, exploration and exploitation are required in experi-
ments. In the former, we obtain data for the construction 
of a more exact model, which is achieved by obtaining the 
data at the input around the larger uncertainty. For the lat-
ter, we obtain the data for finding the optimal input, which 
is achieved by obtaining the data at the input around the 
larger predictive mean. This implies the presence of a trade-
off between exploration and exploitation. To address this 
tradeoff, a function called the acquisition function is used 
to propose the next experimental condition. An example of 
the acquisition function is illustrated in the bottom panel of 
Figure 1. The function is calculated using the predictive mean 

and the uncertainty; the results confirm that the function is 
maximized at x=0.5, which is the point with the larger func-
tion value and the larger uncertainty. Thus, the framework for 
iteratively modeling using Gaussian process regression and 
conducting experiments under the proposed conditions is 
called Bayesian optimization (BO). As the acquisition func-
tion, the expected improvement (EI) is calculated using the 
predictive mean; in general, uncertainty is used. In this study, 
we used the modified EI to obtain two or more experimental 
conditions. The modification involved penalizing the acqui-
sition function by the distance of the inputs between the 
proposed (next) input and the newly proposed (after next) 
input (see for a detailed explanation of Bayesian optimization 
(Frazier, 2018).

2.2  Experimental procedure
In this work, numerical simulations were performed using 

actual experimental data through the use of a red-emitting 
phosphor Srx(La10–x–yEuy)(SiO4)6O3–x/2 (x=2–6, y=0.6–1.2) (Na-
kayama, 2019) with a system program, wherein two com-
ponents in the material were changed. The preparation 
methodology and evaluation of the phosphor are as follows. 
Srx(La10–x–yEuy)(SiO4)6O3–x/2 was prepared from SrCO3 (99.9 % 
purity, Fujifilm Wako Pure Chemical Co.), La2O3 (99.9 % purity, 
Shin-Etsu Chemical Co., Ltd.), and Eu2O3 (99.9 % purity, Shin-
Etsu Chemical Co., Ltd.) powders. These component powders 
were mixed using a ball mill (Fritsch Co., Pulverisette 6). After 
drying, the powders were pressed into discs under a pressure 
of 100 MPa and sintered at 1500 °C for 2 h in air. The sintered 
disks were crushed with a zirconia mortar to obtain powders 
for various measurements. The obtained phosphors were 
characterized by X-ray diffraction and fluorescence spec-
troscopy. X-ray diffraction data were obtained using an X-ray 
diffractometer (MiniFlex II, Rigaku Co.). Emission spectra were 
measured on a spectrofluorometer FP-6500 (JASCO Co.) with 
an excitation wavelength of 395 nm. The strongest emission 
spectrum peak was observed at approximately 614 nm.

3.  Experimental and optimization results (verification of 
prediction of optimal composition by AI)

The results of the X-ray diffraction analysis revealed the 
Srx(La10–x–yEuy)(SiO4)6O3–x/2 (x=2–6, y=0.6–1.2) samples to be 
composed of a single phase of the oxy-apatite structure. 
The region of x=2–6 is called the apatite composition. The 
excitation (with emission wavelength λem=618 nm) and emis-
sion (with excitation wavelength λex=395 nm) spectra of the 
Sr4.5(La4.4Eu1.1)(SiO4)6O0.75 phosphor sample are shown in Figure 
2. Figure 3 shows the PL intensities (a. u.) of the Srx(La10–x–yEuy)
(SiO4)6O3–x/2 (x=2–6, y=0.6–1.2) red-emitting phosphors at 
around 614 nm for excitation wavelength of 395 nm. The 
nine underlined bold values of PL intensity in Figure 3 are the 
initial input data to the AI program. For calculation, the con-

Figure 1: Example of Bayesian optimization
Notes: Top panel: an example of the Gaussian process regression 
model with one-dimensional input x. Bottom panel: an example 
of the acquisition function. The experimental data (xk, f(xk)) used 
to obtain this model are (0.1, –0.1), (0.2, 0.3), and (0.8, –0.1), indi-
cated by the large dots in the figure. The solid line indicates the 
predictive mean (regarded as the predicted value of f(x), while 
the gray-colored area shows the predictive variance, which in-
dicates the uncertainty of the prediction. The next experimental 
condition (x) is determined using the acquisition function.
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figurations were as follows; x was 0.5 intervals in the range 
of 2.0–6.0, y was 0.1 intervals in the range of 0.4–1.4, and the 
next candidate composition was one. Although the values at 
(x=2.0, y=0.8), (x=3.0, y=0.8), (x=4.0, y=0.8), (x=5.0, y=0.8), and 
(x=6.0, y=0.8) in the previous report (Nakayama, 2019) were 
used as input data, the next candidate composition could 
not be obtained under the aforementioned conditions. Then, 
as a result of sequentially adding the data from preliminary 
experiments conducted at (x=3.0, y=0.6), (x=3.0, y=1.2), (x=3.0, 
y=1.4), and (x=4.0, y=1.0), the next candidate (x=3.0, y=1.0) 

was obtained. Subsequently, candidates (x=3.0, y=1.0), (x=4.5, 
y=1.1), (x=5.0, y=1.1), and (x=4.5, y=1.1) were obtained; the 
fifth candidate was again the same as the composition (x = 
4.5, y=1.1) of the highest PL intensity (1.72). The results are 
depicted in Figure 4. Thus, the AI calculation process was 
terminated. Next, the number of next candidates was set to 
two, and the calculations were performed. Candidates {(x=3.0, 
y=1.0) and (x=3.5, y=0.9)}, {(x=4.5, y=1.1) and (x=3.0, y=0.8)}, 
{(x=5.0, y=1.1) and (x=3.5, y=0.9)}, {(x=4.0, y=1.1) and (x=3.5, 
y=0.9)}, {(x=4.5, y=1.1) and (x=3.5, y=0.9)}, and {(x=4.5, y=1.1) 

Figure 2: Excitation and emission spectra of Sr4.5(La4.4Eu1.1)(SiO4)6O0.75 phosphor sample

350 400 450 500 550 600 650 700
Wavelength (nm)

2.0

1.5

1.0

0.5

0

In
te

ns
ity

 (a
.u

.)

λem = 618 nm λex = 395 nm

Figure 3: PL intensities (a.u.) at around 614 nm (excitation: 395 nm) for the composition (x, y) of Srx(La10–x–yEuy)
(SiO4)6O3–x/2 phosphor
Notes: The underlined bold values indicate the initial input data to the AI program. The values of (1) are the data when 
the next candidate is set to one. The values of (2) are the data where the next candidate is set to two. The values in ital-
ics refer to other data.
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and (x=4.0, y=1.0)} were obtained. The calculation was ter-
minated as the same candidate composition was obtained 
in successive iterations. The results are summarized in Figure 
5. Additional experiments were performed on the 10 com-
positions around the composition (x=4.5, y=1.1), where the 
highest PL intensity was obtained, but none exceeding the 
PL intensity at (x=4.5, y=1.1) was observed. From the above 
results, we conjecture that the composition with the highest 
PL intensity can be obtained by repeating the process of ob-
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Figure 4: Results of AI calculation processing when the subse-
quent candidate is set to one
Notes: The nine compositions at (x=2.0, y=0.8), (x=3.0, y=0.8), 
(x=4.0, y=0.8), (x=5.0, y=0.8), (x=6.0, y=0.8), (x=3.0, y=0.6), (x=3.0, 
y=1.2), (x=3.0, y=1.4), and (x=4.0, y=1.0) are the initial input data 
for the AI program. The triangular points in each figure represent 
the latest candidate composition (x, y) and evaluated PL inten-
sity, as sequenced by the corresponding coordinates. I: (x=3.0, 
y=1.0), II: (x=4.5, y=1.1), III: (x=5.0, y=1.1), and IV: (x=4.5, y=1.1). The 
dots in the figures denote the initial input data and the triangular 
points from immediately preceding figure.

Figure 5: Results of AI calculation processing when the subse-
quent candidate is set to two
Notes: The nine compositions at (x=2.0, y=0.8), (x=3.0, y=0.8), (x=4.0, 
y=0.8), (x=5.0, y=0.8), (x=6.0, y=0.8), (x=3.0, y=0.6), (x=3.0, y=1.2), (x=3.0, 
y=1.4), and (x=4.0, y=1.0) are the initial input data for the AI program. 
The triangular points in each figure denote the latest candidate compo-
sition (x, y) and evaluated PL intensity, as sequenced by the correspond-
ing coordinates. I: {(x=3.0, y=1.0) and (x=3.5, y=0.9)}, II: {(x=4.5, y=1.1) and 
(x=3.0, y=0.8)}, III: {(x=5.0, y=1.1) and (x=3.5, y=0.9)}, IV: {(x=4.0, y=1.1) and 
(x=3.5, y=0.9)}, V: {(x=4.5, y=1.1) and (x=3.5, y=0.9)}, and VI: {(x=4.5, y=1.1) 
and (x=4.0, y=1.0)}. The dots in the figures denote the initial input data 
and the triangular points from immediately preceding figure.
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taining the next candidate from the nine initial data, adding 
the data, and performing the calculation approximately five 
times. Therefore, to achieve the target characteristics from a 
limited number of experiments, the AI program that provides 
the next candidate composition developed in this study can 
be regarded as effective in a system with two component 
changes.

4.  Conclusion
In this study, we performed a numerical simulation using 

actual experimental data in a system with two component 
changes. It was suggested that the next formulation can-
didates could be obtained from several experimental data 
and that a formulation with the expected characteristics 
could be obtained as the experiment was further advanced. 
The AI program created in this report will be open (https://
www.daisuket.net/bo/index.html) to facilitate collaboration 
between researchers and engineers across different fields. 
Figure 6 presents the user interface of the proposed applica-
tion. An advantage of our program is that it can directly be 
used on web browsers without (any prior installation require-
ments). It will soon be made available for tablets. For our 

future work, we are considering systems that modify three 
or more components. The validation of this method in other 
fields will also be explored our future work.
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