
149科学・技術研究　第 9 巻 2 号　2020 年Union Press

Technical Report

A proposal for run-time checks on command execution order of software program

Shinichi Funase (Faculty of Production Systems Engineering and Sciences, Komatsu University, shinichi.funase@komatsu-u.ac.jp)

Toshihiko Shimauchi (Faculty of Intercultural Communication, Komatsu University, toshihiko.shimauchi@komatsu-u.ac.jp)

Haruhiko Kimura (Faculty of Production Systems Engineering and Sciences, Komatsu University, haruhiko.kimura@komatsu-u.ac.jp)

Abstract
In this paper, we proposed a method to automatically perform “inspection of control flow” of a computer program at runtime.
“Inspection of control flow” is an inspection of whether the commands of the program under inspection are executed in the
intended order. This inspection system targets programs that are written in assembler language and whose command execu-
tion order is determined based on input data. Normally, the program to be executed is an object program written in machine
language. However, it is difficult to directly handle the machine language expressed in binary numbers. Therefore, the assem-
bler language that has a one-to-one correspondence with the machine language and is expressed by alphanumeric characters
and symbols is used for this paper. The proposed system used a learning system to automatically increase the amount of text
information. The performance of this system was compared to a conventional inspection method from the input/output rela-
tionship. The proposed system detected 80% of the errors detected by the input / output relationship method.

Key words
software testing, program inspection, control flow, logic er-
rors, debugging

1. Introduction
Software testing is the process of finding behaviors or

defects (bugs) that are not specified in a computer program.
Behaviors and defects that are not in the specifications are
usually called logic errors. Debugging is the process of fix-
ing defects in a program found in software tests. Successful
software testing means that the test finds defects, passes all
specified test items, or reaches specified quality goals. For
some software development, the target quality requires to
pass all the specified test items. For example, the OS and pro-
gramming languages stipulate conformance tests to check
if they meet the specifications. Software testing can show
the existence of defects but cannot prove the non-existence
of defects. The work of guaranteeing that software does not
have unspecified behavior is called proof, and there are sys-
tems designed for proof and languages fit for proof, but the
actual proof was conducted by using mathematical methods
such as Euclidean algorithm. (Kimura, 1976; Myers, 1979; NIST
1990; IT Media, 2011; ISTQB, 2018, JSTQB, 2018, Wikipedia,
2020, TOPPERS, n.d.)

The software test proposed in this paper falls into the
category of dynamic software testing where the program in-
spection is automatically performed simultaneously with the
execution of the program. The bugs targeted in the software
test of this paper are bugs related to control flow (Kimura,
1976).

2. Overview of the proposed inspection method
The “inspection of control flow” conducted in this paper is

a process to inspect whether or not the program under test
has executed the intended series of instructions. The program
to be inspected P (hereafter target-P) is written in assembler
language (used in FACOM 230-15), and the sequence of in-
struction execution of target-P is determined by the input
data.

The outline of this inspection is as follows. First, target-
P is passed through the interpreter to be decrypted and
executed by the interpreter. Target-P will not be translated
into machine language, but each instruction is deciphered
by the interpreter, and the interpreter executes each instruc-
tion. Specifically, the instruction to be executed for target-P
is called into the interpreter, the type of instruction is deci-
phered, and the function of that instruction is executed by
the interpreter. Then, the next instruction is called, and its
decoding and execution is repeated in the same manner. In
this process, a series of labels (address) which target-P should
pass is retrieved to check whether the sequence follows the
specified path.

3. Program for inspection test and preparation of pro-
posed inspection

First, target-P is created by following the general flow-
chart. A general flow chart is a schematic design and clearly
describes the outline and flow of each work. In the general
flowchart used in this paper, labels are added at the branch
points and at the beginning of each work. The flowchart also
constitutes a tree. These labels in the general flowchart are
used for target-P. A detailed flowchart is a flowchart of target-
P, and each block corresponds to each instruction of the
program. Figure 1 shows an example of creating general and
detailed flowcharts.

The general flowchart in Figure 1 shows a simple process

150 Studies in Science and Technology, Volume 9, Number 2, 2020

that is divided into a process with label N1 and that with label
N2 at the branch point R1. Target-P is coded based on this
general flowchart. The detail flowchart is an easy-to-under-
stand version of target-P. In this example, there are three er-
rors. The first does not pass through the branch point R1. The
second is to go outside of the program. The third is an infinite
loop with iterative processing.

A preparation for the proposed inspection requires a cre-
ation of a correspondence table for retrieving from input data
a series of labels (addresses) that target-P must pass. Figure 2
shows an example of a control flow of input data based on a
correspondence table. This series of labels is a marker to show

the main flow of control described in the general flowchart.

4. Types of logic errors covered in this study
Following four logic errors are targeted in this paper:

(1) The control flow goes out of target-P.
(2) The control flow does not pass through the intended se-

ries of branch points and labels.
(3) In the learned control flow, the control follows different

branches even though the input data is the same.
(4) The control flow doesn’t stop.

The logic error in (3) occurs when target-P is partially de-
stroyed in advance.

5. Flow of proposed inspection methods
(1) Target-P is input to the interpreter.
(2) The interpreter decodes the first instruction of target-P,

and the processing of the same function as the instruc-
tion is executed in the interpreter. However, if it is an in-
put instruction, it reads the input data and also retrieves a
series of labels that target-P must pass through.

(3) The next instruction of target-P is retrieved, decrypted,
and the processing of the same function as that instruc-
tion is executed in the interpreter, but while confirming
that P passes through a series of labels that must be
passed. This operation is repeated until a stop command

Figure 1: General and detailed flowcharts

General �owchart Detailed �owchart

R1

N1 N2

Coding

Target Program P
(Assembler Language)

R1

N1 N2

Error

In�nite LoopError

Address out of
Target Program

Error

Figure 2: Control flow of input data
Note: The shaded area corresponds with the three errors shown
in Figure 1.

(R1, N1, Stop)

Logic Error

(R1, N2, Stop)

(Out of P)

(N1, Stop)

(Does not stop)

151科学・技術研究　第 9巻 2号　2020 年

S. Funase et al.: A proposal for run-time checks on command execution order of software program

is issued, an address outside P is reached, or an infinite
loop is reached. However, for the infinite loop, the elapsed
time for threshold shall be set in advance.

(4) In addition, a learning function is added to this system.
This function memorizes a pair of input data and a se-
quence (branch point and/or jump destination address)
that P passed through and checks whether the same in-
put data to target-P leads to the same sequence (branch
point and/or jump destination address) stored as a pair
in the memory. This learning function confirms whether
logic error (3) is occurred or not. However, the data used
is limited to the initial execution period to save memory.

6. Experiment
A part of the communication software (1,500 words rou-

tine) was used for target-P in the experiment with two meth-
ods. The first method employed a conventional method to
check the existence of a logic error based on the relationship
between the input data and the resulting output data. The
second method is the proposed method described in 5. After
running 40,000 steps, the first method detected five logic
errors while the second method detected four. The logic
error not detected in the second method was an error not
affecting adversely on control flow. The proposed inspection
method can be judged to have necessary error detecting ca-
pability.

The feature of this system allows the inspection to be car-
ried out simultaneously with the execution of the program,
which shortens the inspection time. Therefore, when compar-
ing the inspection times of this system and checking input/
output relationship under human intervention, this system
is significantly faster. However, running target-P with this
automatic error check system requires significantly longer
time compared to running the program without the system.
Another advantage of this system compared to conventional
input-output relationship checking is that it allows to locate
approximate steps where logic errors occur.

7. Results and Discussion
The following was found from the statistical data collected

during the inspection period. Commands listed in Tables
1 through 3 are those of assembler language used in FA-
COM230-15.

Table 1 shows the probability of commands to be executed

in target-P organized by category. Table 2 shows the prob-
ability of commands in detail. The branch commands are exe-
cuted in 0.29 probability, meaning the collation is performed
every three steps on average.

The total number of corrections for each instruction by the
proposed system is shown in Table 3.

8. Conclusion
In this paper, an automatic inspection method focusing on

the control flow was proposed. The proposed system used a
learning system to automatically increase the amount of text
information. In addition, the performance of this system was
compared to a conventional inspection method from the
input/output relationship by using a part of the communica-
tion software as target-P.

The result of the study showed that this system detected
80 % of the errors detected by the input/output relationship
method. The system allows inspection to be conducted si-
multaneously with the execution of target-P, shortening the
time required for inspection and improving the accuracy of
the test. Furthermore, the system shows approximate loca-
tion where the logic error occurs. From the above, the effec-
tiveness of this system was established.

The logic errors that can be inspected by this inspection
system are as follows.

Category Probability

Address reference command 0.81

N designation command 0.15

Special command 0.03

Others 0.01

Table 1: Probability of command types

Table 2: Probability of command

Command Probability

J 0.20

L 0.20

T 0.16

SOB 0.08

MIS 0.07

MDS 0.07

LB 0.07

Others 0.15

Table 3: The number of corrections for each command

Command Correction

L 12

LB 8

J 5

T 5

MA 4

SZ 2

MB 1

EOR 1

MDS 1

152 Studies in Science and Technology, Volume 9, Number 2, 2020

•	 It is possible to inspect whether the label or address series
intended by target-P is passed or not while letting target-P
perform the actual work.

•	 The system can detect a case of control flow change when
some input data are selected and executed from the input
data area which should select the same control flow.

Although the system has these advantages, it has several
limitations. One of them is that this system is intended for
testing a program which determines the correct control flow
path from input data to text

References
International Software Testing Qualifications Board (2018).

Certified tester foundation level syllabus 2018v3-1. https://
castb.org/wp-content/uploads/2020/01/ISTQB-CTFL_Syl-
labus_2018_V3.1.pdf (Accessed on December 10, 2020).

IT Media (2011). “coverage criteria.”, Information system glossa-
ry. http://www.itmedia.co.jp/im/articles/1111/07/news142.
html (Accessed on December 10, 2020). (in Japanese)

Japan Software Testing Qualifications Board (2018). Founda-
tion level syllabus, version 2018.J03. http://jstqb.jp/syllabus.
html#syllabus_foundation (Accessed on December 10,
2020).

Kimura, H. (1976). A study of software reliability. Master thesis
of Tohoku University. (in Japanese)

Myers, G. J. (1979). The art of software testing. New York: John
Wiley and Sons.

National Institute of Standards and Technology (1990).
PCTS:151-2, POSIX Test Suite (POSIX 1990 version). http://
www.itl.nist.gov/div897/ctg/posix_form.htm (Accessed on
December 10, 2020).

TOPPERS (n.d.) TTSP. https://www.toppers.jp/ttsp.html (Ac-
cessed on December 10, 2020). (in Japanese)

Wikipedia (2020). Software testing (Accessed on December
10, 2020).

(Received: December 16, 2020; Accepted: December 25, 2020)

