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Abstract
Hawaii is an attractive proving ground for electric and hybrid vehicles (EHV) evaluation.  Envisioning and em-
bracing the needs for environmental-friendly advanced transportation technology developments, the Hawaii Cen-
ter for Advanced Transportation Technologies (HCATT) and the Electrochemical Power Systems Laboratory (EPSL)
at the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, are working together to promote and
facilitate EHV development in Hawaii.  This paper reports some of the recent activities in EHV evaluation, battery
modeling, and fleet testing in the HCATT program.  The fleet of EHV in this program includes battery-powered EV
(BEV) and battery-fuel cell hybrid electric vehicles (HEV).  We will present vehicle test results, battery modeling
and simulation tool developments, and data analysis approaches that we developed and used in the program.
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1.  INTRODUCTION
Hawaii is an attractive proving ground to conduct elec-
tric or hybrid vehicle (EHV) testing and analysis.  The
climate is always mild with ambient temperature remains
almost constant yearly round.  The variety of terrains
and road conditions around Honolulu provides a wide
range of driving conditions, from busy downtown to
steep mountain curvy roads, in-between highway and
suburban, all within short driving ranges. Even the mild
climate often induces significant weather variations, due
to wind, precipitation, and terrain influences.
In the past decade, HCATT and EPSL have engaged in
a variety of BEV and plug-in hybrids (PHEV) evalua-
tions.  Substantial amount of data and experiences have
been collected over this period.  Three prominent eras
have been staged.  The first one included a fleet of more
than 40 S-10 pickup trucks and Geo Prizm sedans, all
battery-powered, integrated by US Electricar (Torrance,
CA) during 1995-2000, with a number of unique cus-
tom made vehicles (including hybrid transit buses) and
rapid charging infrastructure.  In the second era, a close
collaboration with Hyundai Motor Co. (Seoul, Korea)
enabled 15 Santa Fe SUVs powered by Panasonic Ni-
MH battery packs tested in Honolulu.  In the current
era, collaboration with the Air Force Advanced Power
Technology Office (APTO) has led to the establishment

of an Air Force demonstration site for ground vehicles
and logistic infrastructure at the Hickam Air Force Base
in Honolulu, focusing on various hybrid powertrain
evaluations, including hydrogen-based infrastructure and
supporting logistics.  One of significant undertakings in
this effort is data collection and analysis of the field test
data recorded during the field evaluations.
To date fleet data analysis and interpretation, including
driving cycle analysis, remain very challenging.  De-
spite continuous progress made in the past few years, no
consistent approach have been accepted by the research
community at large to allow a systematic and detailed
characterization of the driving pattern except those based
on standard driving schedules running on dynamometers
or well-documented tracks [Ericsson, 2000, 2001; An
et al., 1993, 1997, 1998; Barth et al., 1999, 2002; Tong
et al., 1999; Butler et al., 1999; Rahman et al., 1999;
Young et al.; 2000; Dembski et al., 2002; Ergeneman et
al., 1997; Kent et al., 1978; Simanaitis et al., 1977; Andre
et al., 2004; Tsai et al., 2005].  Experiences from field-
testing are mostly limited to statistical analyses [Weijer
et al., 1997; Riemersma et al., Kelly et al., 2001; Frey et
al., 2002], offering limited value for use in technical
improvements of battery design or operation.
In the past few years, we have developed an alternative
approach based on fuzzy logic pattern recognition [Liaw
et al., 2002, 2003, 2004, 2007; Dubarry et al., 2005;
2007].  This simple and comprehensive approach pro-
vides a better understanding of driving cycle analysis.
Recently the same technique has been used to analyze
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Fig. 1   (Top) Hyundai Santa Fe BEV and (Bottom)
Plug-in hybrid electric bus tested at HAFB by HCATT.

the power usage of the vehicle operation with respect to
driving pattern, taking into account road conditions and
driving habits [Dubarry et al., 2007; Liaw et al., 2007].
Besides being able to characterize driving cycles, we
also devoted efforts to address other key issues such as
life prediction of the power sources using reliable com-
puter simulation models. Such models have to consider
both material specificities (chemistry, origin of degra-
dation, etc.) and environmental conditions (pack con-
figuration, temperature, duty profile, etc.).  Based on
our knowledge of battery performance and its degrada-
tion mechanism [Dubarry et al., 2006, 2007; Barker et
al., 1995, 1996; Aurbach et al., 1999; Buqa et al., 2005],
we were able to develop some predictive tools to simu-
late battery behavior in a single cell or in a pack [Liaw
et al., 2004].  By adding these new tools to our prior
capability in driving cycle analysis, we now have a suite
of software applications dedicated to fleet data acquisi-
tion, display, analysis, and simulation with the ability to
handle a large set of real-life data.

2.  DATA COLLECTION
The most successful collection of real-life test data was
obtained from the fleet of 15 Santa Fe e-SUVs (Figure
1, top) prototyped by Hyundai Motor Company (HMC)
in South Korea.  Each vehicle was powered by a
Panasonic nickel metal hydride (Ni-MH) battery pack
and an Enova 60 kW Panther drivetrain.  An on-board
data logger was used in each vehicle for data collection
on a time-series basis.  More details about the data col-
lection and driving cycle analyses are available in our

previous reports [Liaw et al., 2002, 2003, 2004, 2007;
Dubarry et al., 2005; 2007]. The data collected includes
more than 255,000 km and 25,000 trips in the database
for the e-SUVs during a two-year test period.
More recently, a plug-in battery - fuel cell hybrid bus
(Figure 1, bottom) with a 20 kW Hydrogenics PEM fuel
cell auxiliary power system for power-assist and a 140
Ah Hawker VRLA battery pack for propulsion has been
in operation at Hickam Air Force Base (HAFB), Hono-
lulu, Hawaii.  This plug-in hybrid bus is also equipped
with an on-board data logger, which communicates with
the power control unit (PCU) and battery management
unit (BMU) on the vehicle to log data in a second-by-
second interval.  Periodically, the data stored on the log-
ger were transferred to a computer and then processed
to the database in the laboratory for further analysis.
Both trip and charging data, including detailed data from
the drivetrain, battery modules and fuel cell power con-
trol unit, were collected for the bus operation.

3.  FLEET DATA ARCHIVAL AND ANALYSIS
3.1 Data management
Data transferred from on-board loggers to the database
can be retrieved by a MATLAB® graphical user inter-
face (GUI) that allows the display of second-by-second
data in a variety of parameters for a given trip (e.g., pack
voltage, current, power, vehicle speed, temperatures at
different locations, etc.), allowing a quick screening and
selection of trips for analysis (Figure 2).

3.2 Driving cycle analysis
Average speed and distance are two variables often used
to describe a driving cycle.  They are representative of
the driving cycles mainly because if the speed is almost

Fig. 2  An example of available data from the Santa Fe
EV database, exhibited as driving and duty cycle.
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Fig. 3  Schematic representation of a trip (or driving
cycle, as represented by a speed vs. time curve) broken
down into a series of isolated “driving pulses”.

Fig. 5  An example of driving cycle analysis using the
FL-PR technique.

Fig. 4  Distribution of average speed vs. distance in the
matrix representing all driving pulses in the database.

monotonic, driving over a long distance at a high speed
indicates that the driving is most likely on a highway.
Likewise, traveling at a low speed over a short distance
with frequent stops represents a city driving with con-
gested traffic.  The problem is a trip is rarely mono-
tonic, and most of the time a trip comprises many differ-
ent driving conditions irregularly.  Therefore, no single
scheme can easily reflect this sporadic nature of driving
cycles.  It is difficult to describe a driving cycle in a
consistent and quantitative manner.  Many attempts by
numerous laboratories have been made to address this
problem in various approaches.  The difficulty remains
in seeking a coherent representation of driving cycles.
Our recent work [Liaw et al., 2002, 2003, 2004, 2007;
Dubarry et al., 2007] proposed the use of a fuzzy-logic
pattern recognition (FL-PR) technique to characterize
driving events in a systematic manner.  The FL-PR ap-
proach offers a bifurcation to merge descriptive and
numerical nature of driving events into a common plat-
form for analysis.  We also proposed the concept of “driv-
ing pulses” as building blocks to compose driving cycle
with a series of driving events.  A “driving pulse” is an
active driving period between two sequential stops within
a trip (Figure 3).  With proper classification of driving
event for each driving pulse, we thus compose the trip
into a sequential composition of driving events, called

“driving cycle profile.”  To classify driving events, we
further proposed to use a matrix of average speed and
distance for each driving pulse in a fuzzy set with de-
gree of membership association to define a driving event
(Figure 4).  The curve in white represents the mean value
profile in the matrix for all driving pulses from more
than 25,000 trips in the database.  The shade of gray
represents the distribution (density) of data points (driv-
ing pulses) in the matrix, as shown by the scale bar on
the right.
Five common driving event classifications are used in
the fuzzy classification: “stop-n-go” for heavy traffic
downtown driving, “urban” and “suburban” for metro-
politan area driving, “rural” and “highway” for intercity
driving.  This FL-PR technique is then set to classify
each driving pulse a specific driving event classifica-
tion.  Figure 5 presents an example of a randomly se-
lected trip with the result of the FL-PR classification.
From the speed vs. time curve (top) it is difficult to give
any consistently meaningful description to the progres-
sion of the trip; but with driving cycle analysis (bottom),
it is more comprehensive to depict the driving history,
in which the trip started in a downtown area and then
the vehicle went though the highway to another urban
area.  We can immediately enjoy the benefits of this FL-
PR driving cycle analysis, which allows better compre-
hension of a trip.  Furthermore, through normalization
(in percentage of distribution of each driving event clas-
sification in a trip as a function of time or distance), we
can begin to compare trips in a systematic manner.  This
comparison can be performed with statistical analysis
of each trip [Liaw et al., 2007; Dubarry et al., 2005]
with sufficient temporal and spatial resolutions.  This
approach to driving cycle analysis has been discussed
in more details in our recent publications [Liaw et al.,
2002, 2003; Dubarry et al., 2007; Liaw et al., 2007, 2004;
Dubarry et al., 2005].



Fig. 6  Speed vs. time curve for driving cycle and the
corresponding power vs. time curve for duty cycle.

Power Pulses

Fig. 7  Schematic to illustrate power pulses.

Fig. 8  An example of duty cycle analysis using the FL-
PR technique.

3.3 Duty cycle analysis
A similar FL-PR technique can be applied to the analy-
sis of duty cycle of a trip. An analysis on the power us-
age during a trip provides useful information regarding
the duty cycle that the batteries (and powertrain) endured.
The power pulses exhibit high degree of spontaneous
fluctuations in the duty cycle, far more complicated than
the driving cycle (see Figure 6).  Thus, the use of driv-
ing pulses cannot fully satisfy the requirement for duty
cycle representation.  We thus proposed a different
“power pulse” scheme, which employs a duty event in a
higher frequency profile (than that used by the driving
pulses, due to the nature of the power spectra), as the
building block for duty cycle analysis.  It is worth not-
ing that the vehicle speed spectra usually exhibit lower
frequency patterns than the power spectra.  Duty cycles
are often more dynamic and spontaneous (Figure 6) with
a higher pulse frequency than the driving cycles [Liaw
et al., 2007].  A power pulse is defined by the duration
of an active power variation (positive for regenerative
braking and negative for driving) above or below a
baseline background power draw [Liaw et al., 2007]
(Figure 7).

A power pulse’s peak power value and its frequency (of
occurrence in 1/duration) can be used, as a conjugated
metric, to describe a power spectrum, which depicts the
power usage of the vehicle.  It is also worth mentioning
that this conjugated metric is associated with battery
degradation: the peak power level represents the inten-

sity of discharge and charge, and the frequency depicts
how often this fluctuation occurs. Both variables can
amplify battery degradation, depending on the ability of
the battery in handling peak power pulses.  This power
pulse analysis and the membership functions used in the
power event classification for duty cycle analysis have
been discussed in [Liaw et al., 2007].  The membership
functions used in the peak power and pulse frequency
metric allow us define power usage in a range of classi-
fication from “benign” to “intensive”, as illustrated by
an example in Figure 8 for duty cycle analysis.

3.4 Driving pattern classification
Although driving and duty cycle analyses allow us clas-
sify driving and duty events, respectively, we however
did not address the interrelation between the two pro-
files.  The duty profile is directly related to the stress
applied to the power source system.  However, what we
would like to know is how the driving profile affects the
powertrain performance.  To put this aspect into a better
perspective, we can use the grading of a road as an ex-
ample.  The grade can raise a significant disparity in
driving and duty events from a “nominal condition.”
Climbing a steep hill versus cruising on a flat terrain
will lead to a distinct disparity in speed and power con-
sumption over the same distance.  Thus, the inclination
may drastically change the correspondence between
power consumption and speed; a high-speed event does
not necessarily correspond to high power usage.  This
might be difficult to decipher in the driving cycle analy-
sis, but it should be easy to tell when the duty cycle analy-
sis is considered simultaneously.  One can use a “driv-
ing pattern,” which is supposed to include this factor, in
describing a driving event.  The driving pattern should
have taken into account both road condition and driving
habit.  The driving pattern can be derived from a combi-
nation of the two analyses with a new set of FL-PR rules.
Such a driving pattern classification may provide a com-
prehensive assessment of vehicle usage with respect to
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Fig. 9  Comparison of (a) a real-life aggressive rural
driving profile (ARDP) and (b) the DST schedule rec-
ommended by the USABC.

powertrain performance.

3.5 Battery test schedules
To date, to evaluate vehicle performance, it is common
to use standardized driving schedules for testing [An et
al., 1993, 2000, 2001; Barth, 1999, 2002; Tong, 1999;
Butler, 1999; Dembski et al., 2002; Ergeneman et al.,
1997; Kent et al., 1978; Simanaitis et al., 1977; Andre
et al., 2004; Tsai et al., 2005; Weijer et al., 1997;
Riemersma et al.].  Likewise, to assess battery perfor-
mance, we also typically use standard protocols, such
as those recommended by the U.S. Advanced Battery
Consortium (USABC) or the Society of Automotive
Engineers (SAE) to test batteries.  For example, the
USABC recommends a “dynamic stress test” (DST)
schedule for a variable power test in the laboratory.  This
schedule is supposed to mimic an aggressive urban driv-
ing [Electric Vehicle Battery Test Procedures Manual,
1996].  The schedule consists of a 360-second series of
regenerative braking and discharge regimens (Figure 9b).
We can repeatedly apply such a schedule in an acceler-
ated cycle life test of a battery until the battery discharges
to a certain depth of discharge.  The Federal Urban Driv-
ing Schedule (FUDS) is another common schedule used
for variable power testing. These schedules are often
similar to those used by internal combustion engines
[www.dieselnet.com/standards/cycles/].
 A deficiency in using these standard test schedules is
that the test results often bear little relevance to a much
broader range of real-life situations. It would be of tre-
mendous merits to apply our understanding of battery
performance in the laboratory testing to real life.  One
possible way is to validate laboratory test scenarios with
real life data.
To explore such a possibility, we began with the analy-
sis of battery data from field-testing and compared them
with those obtained from standard test schedules.  For

instance, we can compare the test result of DST cycle to
that extracted from an aggressive rural driving profile
selected from our database.  Via this comparison, we
could verify the feasibility and validity of our approach.
Figure 9 shows a comparison of (a) a selected aggres-
sive rural driving profile from the database and (b) that
of the DST cycle.  Although the power pulses are shorter
in this specific profile, the peak power distribution is
similar.  The availability of such a profile, for instance,
allows us to collect and compose a set of analogous,
real-life samples to validate our classification method,
which can further validate driving patterns.

4.  BATTERY TEST DATA COLLECTION AND
ANALYSIS
Laboratory battery testing is designed to assess battery
performance with a defined protocol. Accelerated cycle
life test is typically designed to determine battery’s life
expectancy in a duty cycle.  In the case of EV or HEV
applications, it is desirable to test the battery with pro-
tocols that are close to real-life use.  As such, as recom-
mended by USABC [Electric Vehicle Battery Test Pro-
cedures Manual, 1996], battery cycle life testing usu-
ally involves two regimes, an accelerated aging test regi-
men and a reference performance test (RPT) regime
designed to characterize the battery performance and its
degradation through duty cycle aging.  The accelerated
aging test can be performed using the DST cycle (or any
duty cycle extracted from the database) to determine the
ability of the cell to handle power pulses mimicking real
driving situations, or it can be performed by cycling the
battery at a high constant current.
The RPT consists of three core tests.  Two of them in-
volve the determination of cell capacity under constant
current (CC) and constant power (CP), while the third
one reveals the SOC-dependent peak power capability
(PPC), in which the test regime consists of applying 30-
sec high current (9C) discharge step after a low current
(C/10) discharge to displace the cell with 10% of the
rated capacity between each two steps.

4.1 Utilities of reference performance tests
The RPT’s assess the performance characteristics of the
cell and their evolution upon duty cycle aging.  The CC
tests are used to establish the rate capability of the cell
and its capacity retention ability (CRA).  The evolution
of CRA is characterized by the degree of capacity loss,
whereas the rate capability is usually specified by the
Peukert constant k calculated from the Peukert equation
Q = Ik×t where Q is the rate capacity, I the current and t
the discharge duration.  The closer the k is to unity, the
better the rate capability.  Figure 10a presents the Peukert
curves for a commercial LiNi0.8Co0.15Al0.05O2 (LNCAO)
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Fig. 11  Peak power capability of a commercial LNCAO
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Fig. 10  Peukert and Ragone curves of a commercial
LNCAO cell at initial state (o) and after 300 cycles (*).
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Fig. 12  C/50 discharge curve of a Li/graphite cell and
the associated IC peaks (left side).

cell at its initial state (o) and after 300 cycles (*) respec-
tively.  From this plot it is clear that the battery lost about
10% of its capacity after 300 cycles.  It also shows that
the cell lost rate capability as k increased from 1.03 to
1.05.  More complete analysis of this LNCAO cell has
been reported elsewhere [Dubarry et al., 2006, 2007].
The CP tests are designed to establish the Ragone curves,
which assess the trade-off of specific energy and spe-
cific power.  Figure 10b shows the Ragone curves for
the LNCAO cell at its initial state (o) and after 300 cycles
(*).  At the initial state the battery can deliver almost the
same amount of energy over a wide range of power.  Such
ability degraded noticeably upon duty cycle aging.
Figure 11 presents the PPC of the LNCAO cell [Dubarry
et al., 2007] under duty cycle aging. Although the PPC
remained acceptable in the first 200 cycles, substantial
degradation was observed after that.  Routine RPT’s give
over-all spectra of the state of the battery with informa-
tion on its abilities to handle rate, power, and peak power
pulses.  The test results, however, did not provide any
diagnostic information of the degradation.

4.2 Incremental capacity and potentiometric analyses
In order to understand the origins of the capacity loss,
we employed electrochemical techniques to investigate
the charge and discharge behavior of the cell under duty
cycle aging.  Among several available electrochemical
techniques, two of them appear effective and useful since

they do not require additional testing, are non destruc-
tive and can be easily applied based on test results al-
ready yielded from the cycle aging and RPT’s.
One of them is incremental capacity analysis (ICA)
[Dubarry et al., 2006, 2007; Barker et al., 1995, 1996,
1996] which can be used to interpret kinetic evolution
of electrochemical processes.  The incremental capac-
ity (IC) curve displays the capacity change per voltage
interval. Each IC peak on the curve indicates a specific
reaction in the cell.  By deciphering the changes in the
shape and intensity of the peak, we can investigate the
shift in the underlying reaction kinetics, which allows a
chronicle mechanistic understanding of the degradation.
Figure 12 illustrates an example in the study of the graph-
ite anode behavior.  In this presentation, each electro-
chemical process exhibits a specific signature represent-
ing the type of reaction and the associated kinetics.  While
Li ions intercalates in a graphite electrode, one can ob-
serve the characteristics of staging phenomena.  Each
staging process is supposed to exhibit a potential pla-
teau [Aurbach et al., 1999; Buqa et al., 2005] in the
course of intercalation with the associated IC peak on
the left-hand side of the plot.  The IC curve exhibits a
better sensitivity to the variation in kinetics than the
potential excursion curve, especially in the 0.15-0.2 V
region.  Following the evolution of the IC peaks upon
cycling, we can interpret and derive possible degrada-
tion mechanisms [Dubarry et al., 2006, 2007].

By measuring the open circuit voltage (OCV) of the cell
we can use this potentiometric technique to study the
static behavior (close to thermodynamic equilibrium) of
the electrochemical processes in the cell.  For instance,
it can determine the state of charge (SOC) of the cell
[Dubarry et al., 2006, 2007 (2)]. By letting a battery rest
after reaching the end of charge or discharge voltage,
we can correlate the SOC in correspondence to the ter-
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Fig. 13  Equivalent circuit model used for battery mod-
eling and simulation.

Fig. 14  An example of the initial state C rate - SOC
resistance map at room temperature for a commercial
LiCoO2 cell.

mination condition. Continuous monitoring the change
of SOC upon termination in the cycle aging, we can fol-
low the evolution of SOC and capacity loss upon cy-
cling.  This observation allows us to trace the degree of
underdischarge and undercharge as means to assess their
contribution to CRA.  Combining this method with the
ICA, we can map degradation in terms of different ori-
gins [Dubarry et al., 2006, 2007 (3)].

5.  BATTERY MODELING AND SIMULATION
Even with these useful techniques that help us derive
such an understanding of how capacity lost, to reduce
such knowledge into practical applications remain chal-
lenging.  One of the obstacles is the lack of suitable
modeling tools to allow such a knowledge transforma-
tion.  For instance, a prediction of life expectancy of a
battery cell remains difficult.  To date, battery life pre-
diction can be achieved only via laboratory testing with
proper aging protocols [Broussely et al., 2001; Spotnitz
et al., 2002; Ramadass et al., 2004, Dubarry et al., 2007;
Liaw et al., 2004, 2005].  To permit accurate life predic-
tion, a large set of test conditions is usually required,
which is very time consuming and labor intensive.  Due
to time constrain, it is almost impossible to test batteries
for such a large set of conditions.  To enable timely life
prediction of a cell under any given conditions, we be-
lieve that high fidelity battery modeling and simulation
is an effective approach to allow such a knowledge trans-
fer and life prediction.  We have thus developed a unique
empirical approach to model battery behavior using an
equivalent circuit model [Dubarry et al., 2007; Liaw et
al., 2004, 2005] with resistance mapping technique
[Dubarry et al., 2007].  Figure 13 presents the equiva-
lent circuit model that we used.  The function of the
equivalent circuit model is to mimic battery behavior
with a circuitry of simple electrical components.  Each
component in the circuit has a physical meaning in re-
flection of the nature of the battery.  Vo represents the
open circuit voltage of the cell as a function of the SOC,
reflecting the thermodynamic property of the chemistry.
R1 represents the ohmic resistance introduced by the cell
fabrication.  The R2C block represents the electrochemi-
cal kinetics associated with the electrochemical reac-

tions.  R1 and R2C can be estimated by electrochemical
impedance spectroscopy (EIS) and Vo by very low rate
polarization.
The most difficult part in the parameterization for the
model is to evaluate the resistance R2, which is usually
dependent on SOC, rate, temperature, and the age of the
cell.  Our approach is to use a four dimensional (4D)
matrix to calculate the resistance for any given SOC, C
rate, temperature, and age.  For each C rate, tempera-
ture, or age, the R2 values vs. SOC are extracted from
relevant experimental data.  This 4D matrix comprises a
unique algorithm, which allows interpolation and ex-
trapolation of the R2 values over a wide range of condi-
tions.  This 4D matrix can be visualized as a suit of 3D
maps.  For example, R2 values can be viewed as a func-
tion of C rate and SOC, as shown in Figure 14, which
presents the 3D C rate - SOC resistance map at room
temperature and for the initial state of a commercial
LiCoO2 cell.  With this map, the performance character-
istics of this commercial cell can be simulated for dif-
ferent rates in the duty cycles at room temperature.  Cap-
turing accurate performance characteristics is an impor-
tant step toward the simulation of battery modules and
packs that are often configured for practical applications
in mobile and storage devices and systems.

6.  BATTERY PACK SIMULATION
The essence to describe the behavior of a battery pack
in an EV or HEV begins with the accurate simulation of
a single cell battery.  To simulate the behavior of a bat-
tery pack requires much more considerations extrinsic
to the nature of the cell chemistry.  First of all, a pack is
wired network of cells in a specific configuration.  Any
variations in cell chemistry, material processing, and
electrode fabrication will introduce a distribution of cell



characteristics intrinsic to “imbalance” of the cells in
the pack.  Compounding with external operation condi-
tions, such an intrinsic imbalance will be elevated to
intensified variations in individual cell behavior.  This
complicated imbalance issue troubles the pack manage-
ment greatly in practical applications, particularly in
EHV where packs are usually more complex than those
used in portable devices such as cellular phones, laptop
computers, and other audio and video players.
Battery testing and modeling probably can catch these
imbalance issues adequately, although current efforts in
dealing with these problems remain ineffective.  In our
thesis, we believe a high fidelity model and simulation
starts at the quantification of the intrinsic imbalance of
the cells.  With proper quantification of this intrinsic
imbalance distribution, we should be able to implement
suitable measures in the pack model to emulate the pack
behavior with the intrinsic variations in cells with the
specific configuration.
Only if the intrinsic imbalance were properly addressed,
the external fluctuations in the operating conditions and
their impacts on the cell behavior can be emulated and
understood properly.  These external factors introduced
in the pack operation can have profound impacts on cell
imbalance.  For instance, a temperature gradient in the
pack or a distribution of the initial capacity of the cells
in the pack can be present almost in every practical in-
stance of applications.  Quantifying compound imbal-
ance from the intrinsic distributions plus the influences
from the external factors is a tangible way to understand
the pack performance.  In order to deal with these spe-
cific issues and to predict pack life expectancy, we started
to develop models with quantified cell intrinsic imbal-
ance variations.  The equivalent circuit model is a good
starting point, which provides cell models as modular
blocks in a “wired” configuration by electrically con-
necting single cells in a specific topology.  With suitable
software environment and integration, we can then con-
trol either cells or small subscale battery modules in the
simulation to understand the pack performance charac-
teristics.  Results of the comparison of the model and
real life data from our vehicle fleet will be published
elsewhere in the future.

7.  CONCLUSION
Analyzing results from a fleet of EV or HEV is very
crucial but challenging.  The use of fuzzy logic driving
pattern recognition technique can help the interpreta-
tion of the field test data collected from such a fleet.
This approach appears intuitive, comprehensive, prac-
tical, and useful in the driving cycle analysis of real-life
trip data.  This methodology also allows analyzing and
comparing trips consistently in a systematic manner. It

also helps in side-by-side evaluations of vehicle usage
and powertrain performance, including analysis of bat-
tery pack and fuel cell stack (although such analysis was
not discussed in this paper).
A better understanding of the power source systems still
requires laboratory evaluations.  We demonstrated that,
with simple protocols, a carefully crafted test procedure
can give useful information about life expectancy and
battery performance characteristics.  Nevertheless, such
test procedure will not be able to give any diagnostics
of the capacity loss in the exercise of duty cycle tests.
We proposed to use the incremental capacity analysis
and relaxation potential (potentiometric) measurements
to allow deciphering the loss mechanisms.  We found
that these two techniques are powerful and easy-to-
handle tools to determine the thermodynamic SOC lim-
its during duty cycle aging and identify the origin of the
capacity loss in the process.  This approach can help us
develop a better understanding of the degradation be-
havior of the batteries and packs and can help us pre-
vent premature failure in the field.
Using computer modeling and simulation is a tangible
manner to transfer the knowledge from the laboratory to
the field.  We explained that it is necessary to make an
accurate prediction of the life expectancy of the cell as
the basis of controlling the battery pack performance.
There are many factors that can impact the battery pack
performance, including the intrinsic distributions of cell
characteristics that constitute the initial cell imbalance
in the pack.  Further complication from the variations in
operating conditions can only worsen the imbalance is-
sues.  An effective way to address these imbalance is-
sues started from an accurate characterization of the cell
variations.  With correct model approach, we can thus
begin to understand the variations in the pack perfor-
mance under different operating conditions.
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