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Abstract
Plug-in Hybrid Electric Vehicles (PHEVs) offer a great opportunity to significantly reduce petroleum consumption.
The fuel economy of PHEV is highly dependent on All-Electric-Range (AER) and control strategy. Previous studies
have shown that in addition to parameters influencing Hybrid Electric Vehicles (HEVs), control strategies of PHEVs
are also influenced by the trip distance. This additional parameter makes it even more difficult to manually tune the
parameters that minimize fuel consumption.  This study uses a pre-transmission parallel PHEV model developed
with the Powertrain System Analysis Toolkit (PSAT). A non-derivative based algorithm called DIRECT (for DIvided
RECTangles) is used to optimize the main control strategy parameters. The fuel economy and main performance
criteria of the PHEVs are compared for the initial design and final optimal design. An optimal control solution
resulting from an extensive search of the entire design space can provide physical insight into the PHEV operation.
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1.  INTRODUCTION
For the past couple of years, the U.S. Department of
Energy (DOE) has spent considerable effort on research
and development of Plug-in Hybrid Electric Vehicle
(PHEV) technology, because of the potential fuel dis-
placement the technology offers. DOE’s PHEV R&D
Plan [US DOE, 2007], which was launched with the aim
of reducing the dependence on foreign oil by diversify-
ing the sources for automobile fuels, describes the dif-
ferent activities required to achieve its goals. DOE will
use Argonne National Laboratory’s (Argonne’s)
Powertrain System Analysis Toolkit (PSAT) to guide its
analysis activities, stating that “Argonne’s PSAT will be
used to design and evaluate a series of PHEVs with vari-
ous ‘primary electric’ ranges, considering all-electric and
charge-depleting strategies”.
PSAT [Argonne National Laboratory, 2008; Rousseau,
2004] is designed to serve as a single tool that can be
used to meet the requirements of automotive engineer-
ing throughout the development process, from model-
ing to control.  One of the most important characteris-
tics of PSAT is that it is a forward-looking model — that
is PSAT allows users to model real-world conditions by
using real commands. For this reason, PSAT is called a
command-based or driver-driven model. Written in
Matlab/Simulink/Stateflow [Mathworks, 2005], the soft-
ware allows the simulation of a wide range of vehicle
applications, including light- (two- and four-wheel-

drive), medium-, and heavy-duty vehicles. In 2004,
PSAT, the primary vehicle simulation tool to support
the DOE’s Office of Energy Efficiency and Renewable
Energy (EERE) FreedomCAR and Vehicle Technolo-
gies Program [US DOE, 2004], received an R&D100
Award, which highlights the 100 best products and tech-
nologies newly available for commercial use from all
over the world.
One of the primary outcomes of the vehicle analysis is
to define the component performance goals and require-
ments for R&D/solicitations. PSAT has been used to set
the battery technical target [Rousseau, 2007; Sharer,
2007], that was used to develop the United States Ad-
vanced Battery Consortium (USABC) PHEV Request
for Proposal [USABC, 2007]. In addition to parameters
that influence the control strategy (such as battery State-
of-Charge or drive cycle) of HEVs, several studies have
demonstrated the impact of driving distance on fuel dis-
placement for PHEVs [Karbowski, 2006]. This addi-
tional parameter makes it even more difficult to tune the
parameters that minimize fuel consumption manually.
Thus, automated optimization algorithm is needed to
search for optimal parameters.
Numerous optimization algorithms are available, and
they can be categorized in different ways; for example,
there is the local optimization algorithm versus the glo-
bal optimization algorithm, the deterministic optimiza-
tion algorithm versus the stochastic optimization algo-
rithm or the gradient-based algorithm versus the deriva-
tive-free algorithm. Making the proper selection of an
optimization algorithm for the application of hybrid
powertrain design is not obvious. In this paper, the DI-



RECT (for DIvided RECTangles) algorithm has been
selected on the basis of previous work performed by the
University of Michigan [Whitehead, 2001].
This paper will focus on the optimization of the param-
eters of a pre-transmission parallel PHEV with a 10 miles
All Electric Range (AER). After describing the vehicle
and its control strategy logic, we will evaluate the im-
pact of the drive cycle and distance of several key pa-
rameters of the control.

2.  VEHICLE DESCRIPTION
The vehicle class used for the simulation is a midsize
SUV, since this platform was used to define the USABC
short-term battery requirements.  The components se-
lected, shown in Table 1, are the ones that have been
implemented in Argonne’s Mobile Advanced Automo-
tive Testbed (MATT). MATT is a rolling chassis used to
evaluate component technology in a vehicle system con-
text. The control strategy developed on the basis of the
optimization results will ultimately be implemented and
tested on hardware.

In this study, the battery equations were derived to cal-
culate the impedance of a plug-in hybrid vehicle bat-
tery. Developing the equations to express the battery
resistance of a PHEV battery is more complex than de-
veloping them for a standard hybrid vehicle because the
plug-in battery may be charged and discharged during
vehicle operation for periods lasting several minutes.
Ideally, the equations should be able to reproduce the
measured voltage curves for a complete discharge and
charge at constant current, as well as the battery resis-
tance under conditions of rapidly changing currents.
Current and voltage data taken at Argonne were avail-
able for a cell fabricated by SAFT, Inc.  The data for the
cell measured at Argonne were for a 3-h discharge at

constant current and for Hybrid Pulse Power Character-
ization (HPPC) tests [Shidore, 2006]. These data were
fit to an electronic simulation model with two time con-
stants (Figure 1) of the form:
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for each of the polarization impedances, where τ
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are time constants, as in an earlier study that also used
two polarization impedances and in the DOE’s PNGV
Lumped Parameter Model, which was a similar model
with one polarization impedance. The parameters in the
equation (OCV, R

0
, R

p1
, R

p2
) were selected to match the

measured data for both the 3-h discharge and the HPPC
data for the entire range of the discharge, and these pa-
rameters were presented in the form of a lookup table
with values from 0% to 100% state of charge at 10%
intervals (τ

1
 and τ

2 
were held constant over the entire

discharge).
As shown in Figure 2, the configuration selected is a
pre-transmission parallel hybrid, which is very similar
to the one used in the DaimlerChrysler Sprinter Van
[Graham, 2005].

3.  CONTROL STRATEGY ALGORITHM
The control strategy can be separated into two distinct
modes, as shown in Figure 3:
• Charge Depleting (CD) mode: Vehicle operation on

the electric drive, engine subsystem or both with a
net decrease in battery state-of-charge.

• Charge-Sustaining (CS) mode: Vehicle operation on

Table 1  Main specifications of the vehicle

Fig. 1  Battery electric circuit model



the electric drive, engine subsystem or both with a
‘constant’ battery state-of-charge (i.e., within a nar-
row range), which is similar to those in HEVs that
are in current production.

The first critical part of the control strategy logic is re-
lated to the engine ON/OFF logic.  As Figure 4 shows,
the engine ON logic is based on three main conditions:
• The requested power is above a threshold.
• The battery SOC is lower than a threshold.
• The electric motor cannot provide the requested

wheel torque.
In addition to these parameters, additional logic is in-
cluded to ensure proper drive quality by maintaining the
engine ON or OFF during a certain duration.  In addi-
tion, to avoid unintended engine ON events resulting

from spikes in power demand, the requested power has
to be above the threshold for a pre-defined duration. The
engine OFF logic condition is similar to that of the en-
gine ON. Both power thresholds used to start or turn off
the engine as well as determine the minimum duration
of each event have been selected as input parameters of
the optimization problem.
To be able to regulate the battery SOC, especially dur-
ing the charge depleting mode, the power demand that
is used to determine the engine ON/OFF logic is the
sum of the requested power at the wheel plus an addi-
tional power that depends on battery SOC.  This power
can be positive or negative depending on the value of
the current SOC compared to the target.
Figure 5 shows the different parameters used to define
the additional power to regulate the SOC in greater de-
tail. The SOC target has been set when the vehicle is
considered to be entering the charge sustaining mode
(30% SOC). Both ess_percent_pwr_discharged and
ess_percent_pwr_charged  have been selected as input
parameters to the optimization problem.
In electric only mode, the vehicle is propelled by the
electric machine. When the engine is ON, it is operated
close to its best efficiency curve, depending on the ve-
hicle power request and the battery SOC status. Table 2
summarizes the selected control parameters used as part
of the optimization process.

Fig. 2  Configuration selected – pre-transmission parallel HEV

Fig. 3  Control strategy SOC behavior

Fig. 4  Simplified engine on/off logic



4.  DIRECT OPTIMIZATION RESULTS
The fuel economy of a plug-in HEV depends on many
design parameters such as component sizes and control
strategy parameters. Here, a global optimization algo-
rithm, DIRECT [Jones, 2001], is used to search for the
optimal control strategy parameters.
The algorithm optimized the fuel economy, and has been

exercised on two driving cycles, the Urban Driving Dy-
namometer Driving Schedule (UDDS) and the highway
drive cycle (HWFET).  To assess the impact of distance,
each cycle has been repeated 2, 4, 6 and 8 times.

4.1 Parameter control values
Some of the parameters have a higher impact than other
on the outcome of the results.  Based on the correlation
coefficients between the inputs and the fuel economy
values, the parameters with the highest impact are the
p o w e r  t h r e s h o l d  t o  t u r n  t h e  e n g i n e  O N
(eng_pwr_wh_above_turn_on) and the time the engine
is maintained ON (eng_time_min_stay_on).  Conversely,
those with the lowest impact are the power threshold to
turn the engine OFF (eng_pwr_wh_above_turn_on) and
the percentage of maximum battery charging power at

Fig. 5  Example of additional power to regulate SOC

Table 2  Control parameter list

Table 3  Drive cycle characteristics

Table 4  Optimized parameters for UDDS drive cycle



low SOC (ess_percent_pwr_charged).
To simplify the analysis, only the UDDS drive cycle will
be considered in the following paragraphs.  Table 4
shows the optimization results of the UDDS standard
drive cycle.  As the table shows, both power thresholds
related to the engine tend to decrease with increasing
distance. This result can be explained by the fact that
the engine should be turned ON more often for longer
distances than for shorter ones.  Figure 6 demonstrates
that point, comparing the engine power on the UDDS
when the cycle is repeated 2 and 8 times.  Even if the
engine is used at similar operating conditions (i.e., effi-
ciency is fairly constant around 32%, independently of
the distance), it turns ON less often during a short dis-
tance cycle (2.2% on the UDDS*2 vs. 11.6% on the
UDDS*8 during the first cycle).
In order to assess the impact of the parameters, we will

consider different options:
• Same distance, different parameters.
• Same parameter, different distances.
• Same parameter, different cycles.

4.2 Influence of different parameters on distance
In order to evaluate the impact of parameters on the fuel
economy, the same trip was run with the optimized pa-
rameters of the different drive cycle distances.  For in-
stance, Figure 7 shows the vehicle simulated on 2 UDDS
(total distance of 23.7 km) with the parameter values
optimized for 2, 4, 6 and 8 UDDS drive cycles. The
ratios are in respect to the 2xUDDS results.
Figure 7 shows that, for a short distance (23.7km), there
is a significant difference in fuel consumption between
the set of parameters obtained for 2 UDDS and the oth-
ers.  The longer the distance to optimize, the less differ-

Fig. 6  Engine power for 2 and 8 UDDS

Fig. 7  Fuel consumption and battery energy ratios on 2*UDDS



ence there is in fuel consumption.  Figure 8 reinforces
this point by showing the same information for 6 suc-
cessive UDDS drive cycles. In addition, the difference
between the parameter values generated for 2 UDDS is
not as stringent.  The results generated for 4 and 8 UDDS
are similar to the results for 6 UDDS.
On the basis of the information above, at least two sets
of parameters should be used to properly control the
vehicle: one set for short distances and one for long dis-
tances. However, this approach is valid only when one
knows the trip distance in advance.

4.3 Influence of different distances on parameters
In order to evaluate the impact of drive cycle distance
on the fuel economy, different trips were run with each
set of optimum parameters.  Figure 11 shows the ve-
hicle simulated on 2, 4, 6 and 8 UDDS using the param-
eter values optimized for 2 UDDS.
Figure 9 shows the fuel consumption and battery energy

ratios for several distances (2, 4, 6, and 8 UDDS) based
on optimum parameters defined for 2 UDDS.  One no-
tices a ratio of almost 4 for increased distances.  This
value is much higher than the one generated with opti-
mum parameters defined for 6 UDDS as shown in Fig-
ure 10.  This behavior is similar when considering 4 and
8 UDDS.
Figure 9 and 10 demonstrates that optimizing for a short
distance but driving a longer one lead to higher losses in
fuel economy than optimizing for a longer distance and
driving a shorter one.

4.4 Selection of the best single set of parameters
To select a single set of parameters, we considered the
average as well as the spread of the fuel economy from
two different points of view:
• Same distance with parameters optimized for differ-

ent ones (2, 4, 6 and 8 UDDS).
• Different distances with parameters optimized on

Fig. 8  Fuel Consumption and battery energy ratios on 6*UDDS

Fig. 9  Fuel consumption and battery energy ratios on different distances based on

optimized parameters from 2*UDDS



only one (2, 4, 6 or 8 UDDS).
In our case, the lower the spread, the better the param-
eter selection is.
Figure 11 shows the average and spread of each set of
runs and optimum parameters for UDDS.  As one no-
tices, independently of the distance the parameters were

optimized on, driving a short distance will always bring
the best fuel economy.  In addition, driving an equal
number of short and long distances will lead to similar
average fuel economy.  The longer the driving distance,
the less important which distance was used to optimize
the parameters (Red spread smaller for 4, 6 and 8 UDDS
than for 2).  Finally, if the parameters are optimized on a
short distance but longer distances are driven, the fuel
economy will fluctuate more and can get higher than
optimizing on a long distance and driving a short one.
As a result, selecting a single set of parameters will de-
pend on the average driving distance and will conse-
quently be different from one drive to another.
Considering the high sensitivity to distance of the pa-
rameters based on 2 UDDS, the parameters from the 4
UDDS appear to be the best compromise if only one set
can be selected.  Knowing the trip distance is critical for
maximizing fuel displacement through GPS or additional
algorithms.

4.5 Impact of drive cycle characteristic
Table 5 shows the optimization results of the HWFET
standard drive cycle.  As the table shows, in contrast to
the UDDS, the power threshold related to the engine

Fig. 10  Fuel consumption and battery energy ratios on different distances based on

optimized parameters from 6*UDDS

Fig. 11  Average and spread of each set of runs and op-

timum parameters for UDDS

Table 5  Optimized parameters for HWFET drive cycle



ON tends to remain fairly constant with distance.
Figure 12 shows the fuel economy ratio evolution of the
different drive cycles considered. For each curve, the
reference (ratio of one) is set for the cycle that has been
initially optimized. In this figure, each set of optimum
parameters is run for every other distance.
The figure shows that the sensitivity of the parameters
on the UDDS is about the same than for the HWFET,
except for the short optimized distance where UDDS is
a lot more sensible to driving distance.

4.6 Comparison between heuristic and global
optimization
Previous studies based on the global optimization algo-
rithm [Karbowski, 2006] have shown that the optimal
pathway was based on maximizing the charge depleting

operating conditions, meaning that the minimum SOC
was reached only at the end of the trip.  Figure 13 shows
the battery SOC from the optimum parameters defined
using DIRECT for several UDDS (2, 4, 6 and 8).  As the
figure shows, a significant portion of the trip is performed
in charge sustaining mode.
Several explanations can account for these results, in-
cluding the following:
• There is a limitation on the initial control strategy

logic.
• There is a need for a larger number of simulations

(currently limited at 1,000).
• The study minimized the number of parameters to

be optimized.

Fig. 12  Fuel economy ratio evolution for UDDS and HWFET

Fig. 13  SOC evolution for several UDDS



5.  CONCLUSION
A non-derivative based algorithm, DIRECT, was used
to optimize the main parameters of a pre-defined con-
trol strategy algorithm. Different sets of parameters were
generated for several drive cycles and distances.  Their
impact on distance and driving cycle were analyzed.
The results demonstrate the need to have different con-
trol parameters depending on distance and drive cycle.
Since none of the trip characteristics might be known at
the outset, if only one parameter is used, the best com-
promise for fuel economy average and variance is
achieved with the parameters defined for medium dis-
tances.
Future work will focus on defining the parameters for
additional drive cycles as well as developing algorithms
to recognize trip characteristics and distance.  The ini-
tial control strategy logic will also be revisited based on
outputs from the global optimization algorithm.
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