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Abstract

Usable remnant energy of a rechargeable battery is proportional to its state of charge, but the values of these two
parameters are not exactly the same. A circuit based on neural network is developed for available capacity estima-
tion of lithium-ion battery. To ensure the network consisting of optimal numbers of hidden layers and neurons,
intensive experiments have been performed and various training algorithms have been evaluated. The experimen-
tal results reveal that the circuit is able to estimate the available capacity of a battery with arbitrary discharging
profiles as well as continuous constant current discharging profiles. This paper presents the roadmap for the design
and the practical constraints for hardware implementation of a neural network based lithium-ion battery capacity

indicator.
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1. INTRODUCTION

A number of papers have been published on theoretical
modeling of a rechargeable battery, but few of them de-
scribe a practical way for real time estimation of the
usable remnant capacity. Some of the proposed meth-
ods for remnant capacity estimation are too complicated
to be implemented with a practical hardware circuit, or
are only applicable to particular discharging profile.
State of charge (SOC) defined in terms of ampere-hour
is the amount of charge stored into a rechargeable bat-
tery. It can be measured by integrating the battery cur-
rent with respect to time. However, SOC is not an accu-
rate indication of residual capacity. Since the usable
capacity that can be extracted from a battery depends
on various factors including discharging current and pro-
file. Usually, more ampere-hours can be obtained for a
lower rate of discharge and discontinuous discharging
profile. Moreover, trickle charging is not recommended
for lithium-ion battery (Li-ion). The rate of self-dis-
charge is difficult to measure and SOC is no longer a
good approximation of the remnant capacity after a bat-
tery has been kept in standby mode for a certain period.
Even though the self-discharging current is known, it is
inappropriate to power up a monitoring circuit or a timer
for measuring the length of standby period. In this pa-
per, a practical circuit based on neural network for esti-
mating the remnant capacity in terms of state of avail-

able capacity (SOAC) is presented. The inputs to the
network involve battery voltage and discharging current
only, and no historical information like previous SOC is
required. The neural network is optimized to fit into a
lower power consumption microcontroller with limited
memory and throughput, and it can be completely pow-
ered off when the battery enters standby mode. Experi-
mental results reveal that the circuit is applicable for
different rate of discharge and arbitrary discharging pro-
file. This paper focuses on the practical considerations
for hardware implementation and the roadmap for de-
sign is presented in detail.

2. LI-ION BATTERY

More than 1500 millions Li-ion batteries of different
sizes and geometries have been produced per year. For
the past decade, the capacity of Li-ion battery was in-
creased nearly 250% due to the improvement of design
[Ritchie, 2004]. Three vehicle manufacturers success-
fully applied rechargeable Li-ion batteries to their elec-
tric vehicles [Pickert, 2001}, [Bitsche et al., 2001},
[Busch et al,, 2001], [St-Pierre, 2001].

2.1 Battery characteristics

Unlike lead-acid battery and nickel-cadmium battery, Li-
ion battery is susceptible to overcharge and over-dis-
charge. The threshold voltages for termination of charg-
ing and discharging respectively are critical. Exceed-
ing the limits can cause permanent damage. To main-
tain normal operation of a Li-ion battery, charging will
be stopped whenever the voltage rises to 4.2V 0.05V

627



M. S. W. Chan et al.: Design and Implementation of Neural Network Based Capacity Indicator for Lithium-lon Battery

whilst charging current is less than 0.1C. Discharging
will be stopped whenever voltage drops below 3V.
Safety circuit should isolate the battery from the charg-
ing and discharging circuit when the terminal voltage
exceeding the upper and lower limit of 4.30V *+
0.05Vand 2.3V = 0.1V respectively [Panasonic, 2003].

2.2 Usable remnant capacity

Usable remnant capacity is defined as SOAC, which
represents the residual ampere-hour capacity that can
be extracted from a battery at a given rate of discharge.
Although the SOC of a Li-ion battery can be determined,
it cannot be estimated accurately without taking the dis-
charging current into consideration. Even worst, self-
discharge causes cumulative error when a battery is kept
at standby mode for a certain period because trickle
charge is not recommended to maintain the SOC at the
fully charged state.

3. ARTIFICIAL NEURAL NETWORK

Theoretical proof has been published to show that multi-
layer neural network with sigmoid output function is able
to approximate universally any function with finite num-
ber of discontinuities. The accuracy of the approxima-
tion depends on the number of layers and neurons in the
network [Demuth et al., 2004], [Hagan, 1996], [Lapedes
etal., 1988]. Thus, artificial neural network (ANN) with
multiple layers is a good candidate to estimate the non-
linear SOAC of Li-ion battery.

3.1 SOAC estimation

The feedforward ANN consists of one or more hidden
layers could be employed. The block diagram of the
ANN for SOAC estimation is shown in Figure 1. The
activation functions of the hidden layer and output layer
are sigmoid and linear function respectively. Since sig-
moid function produces compressed output, experimen-
tal results reveal that linear function is more appropriate
for the output layer in order to obtain a full range of
SOAC. If sigmoid function is employed, error will be

output

Fig. 1 Neural network for SOAC estimation
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increased dramatically when SOAC approaches to ei-
ther 100% or 0%.

Mathematically, the output of the kth neuron at the hid-
den layer can be described as:

V= sig(Z(w,xi + b,-)J (1
i=1

where xis are battery voltage and discharging current

respectively, and bs are the biases.

The SOAC can be expressed as:
SOAC = lin(z (0,5, +b, )) Q)
k=1

4. ROADMAP FOR DESIGN

CGR18650 cells are chosen for the experiment. Data
for training the neural network is taken from the dis-
charging profiles as shown in Figure 2. The cells are
subjected to different rates of discharge, which includes
1C, 0.9C, 0.8C and 0.7C respectively. The terminal volt-
age of the batteries declines faster with higher discharg-
ing current. Both battery voltage and current should be
taken into consideration in finding the SOAC. The in-
fluence of operation temperature is not significant, and
arise of 25°C can only cause a voltage change less than
0.1V. Thus, the impact of temperature is ignored be-
cause the error will be overridden by other factors like
measurement tolerances and circuit noise. The discharg-
ing profiles are obtained with ambient temperature of
25°C.
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Fig. 2 Discharging profiles with various rate of discharge

4.1 Optimal number of layers

In 1957, the Soviet mathematician, A. N. Kolmogorov
put forward the Kolmogorov Existence Theorem, which
is a useful guide for determining an optimal number of
layers. The theorem states that non-linear monotonic
increasing function with single variable and linear sum-
mations can be taken to approximate any continuous
function of k variables. It also states that a three layer
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perception with k(2k+1) nodes can be used to compute
any continuous function of k variables. Thus, a neural
network with multiple layers can be used to emulate any
continuous function. Both the number of hidden layers
and number of neurons per layer contribute to the accu-
racy of the output. More layers imply that smaller num-
ber of neurons can be taken to obtain an output with
desired error. However, the accuracy of the output can
also be controlled by the number of neurons per layer
with fixed number of layers. A number of studies reveal
that it is not necessary to employ a neural network with
more than three layers. Previous researches show that a
three-layer neural network can be trained to approxi-
mate any relationship between inputs and outputs
[Picton, 2000].

4.2 Optimal number of neurons

Once the number of layers has been defined, the num-
ber of neurons of the hidden layer should be determined
through experiments. First of all, a fully charged Li-ion
battery undergoes discharging tests with various current
levels to obtain sets of training data, The data sets are
subjected to neural networks with different number of
neurons in the hidden layer. Backpropagation algorithm
is adopted for training. The criteria for terminating the
training are number of epochs and change of mean square
errors (MSE). The target change of MSE and maxi-
mum number of epochs are 0.1 and 500 respectively.
The MSE and number of epochs are recorded for com-
parison. The results are shown as Figure 3. MSE is a
monotonic decreasing function with the number of neu-
rons. Hidden layer with too few neurons leads to con-
vergence problem, and more epochs of training cannot
reduce the error significantly. However, the maximum
number of neurons should be limited due to various con-
straints. The first constraint is the physical memory size
of the SOAC estimation circuit. The weight associated
with a neuron is represented by a floating-point value
that takes up 4 bytes of memory. Usually, a
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Fig. 3 MSE and epochs vs. number of neurons

microcontroller possesses less than 512 bytes of inter-
nal random access memory (RAM) and more than 1 ki-
lobytes of read only memory (ROM). If the weights are
stored in ROM, then onboard training becomes impos-
sible and the neural network is not adaptive. Besides, if
more than enough neurons are included to the network,
it will have a greater tendency to overfit the data. It is
desirable to have a hidden layer with the number of neu-
rons that is much less than the number of training data.
Based on the trend of MSE shown in Figure 3 and hard-
ware constraints, a single hidden layer ANN with 20 to
30 neurons is applicable.

Intensive experiments have been preformed for the net-
work with 20 and 30 neurons respectively. The perfor-
mance indexes in terms of MSE are shown in Figure 4
(a) and (b) respectively. The goal of the training is to
obtain a MSE less than 0.1. The output of the network
with 20 neurons converges and is almost steady after
100 epochs. However, the MSE is much greater than
the target value. The output of the network with 30 neu-
rons converges significantly within 30 epochs and keeps
on decreasing after 300 epochs. Thus, a network of 30
neurons is chosen for SOAC estimation.

Performanca Index
—

 FRAONTAGY 100K |
E

Fig. 4 Performance index vs. epochs for (a) 20 neurons
and (b) 30 neurons

4.3 Training algorithms

Training vectors consist of too many data could cause
overfitting and validation is important. A set of data is
separated into two groups that are known as training set
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and validation set respectively [Masters, 1993].
Backpropagation training algorithm has been chosen for
the previous experiment to find out the optimal number
of neurons in the hidden layer, but it takes a long time to
obtain the predefined MSE. Faster training algorithms
are available, which fall into two main categories. They
are based on heuristic technique and standard numeri-
cal optimization technique respectively. It is impossible
to know which algorithm will be the fastest for a par-
ticular problem. The number of epochs for training de-
pends on various factors like the desired error, size of
training vector, and complexity of problem [Demuth,
2004].

In order to minimize the training time and power con-
sumption of a microcontroller used for SOAC estima-
tion, it is necessary to find out an effective training al-
gorithm for this case. Different training algorithms are
performed on a PC with the same set of data. The target
MSE is 0.1 and the maximum number of epochs is lim-
ited to 5000. The benchmark with the numbers of ep-
ochs in ascending order is listed in Table 1. BFGS Quasi-
Newton, Scaled Conjugate Gradient, Fletcher-Powell
Conjugate Gradient, and Conjugate Gradient with
Powell/Beale can achieve the performance index with
less than a thousand epochs. However, if the network is
subjected to certain training algorithms like Gradient
Descent Backpropagation and Variable Learning Rate
Backpropagation, the outputs are fail to converge after
five thousand epochs.

Table 1 Performance and convergence of different train-

ing algorithms
- . Performance

Training Algorithm Index Epochs
BFGS Quasi-Newton (BFG) 0.099 439
Scaled Conjugate Gradient
(SCG) 0.100 469
Fletcher-Powell Conjugate
Gradient (CGF) 0.100 374
Conjugate Gradient with
Powell/Beale (CGB) 0.100 863
One-step Secant (OSS) 0.100 1421
Polak-Ribiere Conjugate
Gradient (CGP) 0.100 2350
Resilient Backpropagation
(RP) 0.110 5000
Levenberg-Marquardt (LM) 0.384 5000
Variable Learning Rate
Backpropagation (GDX) 0.340 3000
Gradient Descent
Backpropagation (GD) 0499 3000

Based on the experiments, initial values of the weights
of the network can also affect the rate of convergence.
As an extreme case, MSE bounces around a particular
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value that is much greater than predefined limit after
thousands epochs of training. However, MSE decreases
readily with the same training algorithm but with differ-
ent initial values of weights. It is advisable to reinitialize
the network weights and biases and start the training
again if the output fail to converge. Quasi-Newton train-
ing is chosen for the SOAC neural network.

5. RESULTS

After the network has been trained with the discharging
profiles ranged from 1C to 0.7C, the result is verified
with separate validation data sets. The applicability will
be appraised with different types of discharging profiles.

5.1 Uniform discharging profile

Validation is preformed with another set of data with
the same rates of discharge as the training data. The
MSESs and maximum errors are tabulated in Table 2. As
shown in Figure 5, the estimated SOAC is close to the
actual values. Maximum error occurs when SOAC is
less than 5% or greater than 98%.

Table 2 Validation result

Discharge | Mean Square Maximum
Current Error Error
1C 0.253% 2.965%
0.9C 0.203% 2.407%
0.8C 0.129% 2.413%
0.7C 0.268% 1.910%
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Fig. 5 Actual SOAC and estimated SOAC

5.2 Arbitrary discharging profile

Apart from the continuous constant current discharging
profile, the network is applied to estimate the SOAC of
an arbitrary discharging profile as shown in Figure 6.
Battery voltage bounces to a higher value whenever dis-
charging ceases. The experiment reflects the influence
of voltage fluctuation on the network due to discontinu-
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Fig. 6 Arbitrary discharging profile

ous discharging profile as well as variable discharging
current. First of all, the battery is fully charged. Before
applying the network for SOAC estimation, the battery
is discharged based on the discontinuous profile with
different discharging currents. Thus, the network does
not receive any information about the previous SOC and
discharging profiles. The result is shown in Figure 7.
Although the error of estimation is greater than 10% at
the beginning, it has significant improvement after 3
minutes. The error is around 5% after 4 minutes and
continues to reduce to minimum after 10 minutes of dis-
charging.
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Fig. 7 Actual SOAC and estimated SOAC against
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6. DESIGN CONSIDERATIONS

The network is a generalised SOAC indicator and in-
volves no complicated circuit. It is suitable for medium
to long discharging duration. As a practical application,
mixed mode of SOAC estimation can be employed. Con-
ventional SOAC estimation by counting the ampere-hour
can be applied for the first 5 minutes of discharging.
Then a more accurate estimation can be obtained by
subjecting the battery voltage and current to the network.
Optimal number of neurons is important for the estima-

tion. Too fewer neurons at the hidden layer provide in-
accurate SOAC. In contrast, too many neurons and ep-
ochs of training may cause overfit. It means the net-
work output is accurate for the training data, but it makes
the network applicable only for particular discharging
profiles that are the same as those profiles for training.
Training algorithm is another factor affected the result
of estimation. Appropriate training algorithm not only
speeds up the training, but also has influence on the con-
vergence of the output. Some of the algorithms may not
be applicable for this project because the error is higher
than the goal after several thousands epochs. The block
diagram of the circuit is shown as Figure 8. Any
microcontroller with following features is applicable:
s 2 channels of 10-bit or 12-bit AD converter
m Not less than 256 bytes internal RAM
= Not less than 125 bytes EEPROM for storing the val-
ues of weights and biases
Results reveal that the network is applicable for SOAC
estimation for the discharging current in range of 0.7C
to 1C. The discharging profile, previous SOC and self-
discharge have little influence on the estimation. The
network is extendable for other rates of discharging.
Similar training procedures can be applied to the net-
work for estimation of SOAC with discharging current
less than 0.7C.
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or PC AD = Electronic
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Fig. 8 Circuit for SOAC Estimation

7. CONCLUSION

A SOAC indicator for Li-ion battery has been devel-
oped. Intensive experiments are performed to find out
the optimal configuration of the neural network with the
concerns of accuracy, training efficiency, and hardware
constraints. This paper presents the roadmap of design
and the practical considerations. The experimental re-
sults show that the circuit is applicable for continuous
discharging profiles with various rates of discharging
and arbitrary discontinuous profiles such as electric ve-
hicle operation.
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