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1.  Piecewise model approaches for nonlinear controls
Despite the many analysis and synthesis methods proposed 

for nonlinear control systems, difficulties remain in dealing 
with nonlinear control systems, compared to linear systems, 
and the major reason lies in the lack of a general parametric 
expression for nonlinear systems, whereas linear systems are 
parametric by nature and hence operational.

We proposed Piecewise Multi-Linear (PML) modeling and 
Input-Output (I/O) linearization as a powerful combination 
[Taniguchi and Sugeno, 2013] for analyzing and synthesizing 
nonlinear control systems, where the PML system was para-
metric like the linear system and I/O linearization. Feedback 
linearization is a generalmethod for dealingwith nonlinear con-
trol systems despite limitations in applications.

Piecewise Linear (PL) systems have been intensively studied 
in connection with nonlinear systems [Johansson and Rantzer, 
1998], The original idea was to parametrically approximate a 
nonlinear function with PL functions [Babayev, 1997]. An im-
portant class of hybrid systems is PL systems with a set of rules 
for switching among systems [Imura and van der Schaft, 2000], 
where state space is divided into polyhedral or polytopic regions, 
each region associated with a linear (or affine) system. Gain 
scheduling is also considered with the PL approach [Shamma 
and Athans, 1990]. The PL system concept appears in TS sys-
tems [Tanaka and Wang, 2001] that approximate general nonlin-
ear systems with a number of rules, but unlike the conventional 
PL approximation, these systems are not fully parametric.

This work concerns parametric piecewise approximation of 
nonlinear control systems based on the original idea of PL approx-
imation. PL approximation has a general approximation capability 
for nonlinear functions with given precision, but the PL system 
obtained is too complex to use for control purposes. To overcome 
this difficulty, it has been suggested to use PML approximation 
[Sugeno, 1999]. The PML model has the following features:

• It is built on hyper-cubes partitioned in the state space.
• It has general approximation capability for nonlinear sys-

tems.

• It is a piecewise nonlinear model, the second simplest after 
the PL model.

• It is continuous and fully parametric.

We have thus far shown the necessary and sufficient condi-
tions for PML system stability for Lyapunov functions in the 
twodimensional case [Sugeno and Taniguchi, 2004; Taniguchi 
and Sugeno, 2004]. Because stabilizing conditions are repre-
sented by Bilinear Matrix Inequalities (BMIs) [Goh et al., 1994], 
however, long computing time to obtain a stabilizing controller.

To overcome these difficulties, we have derived stabiliz-
ing conditions [Taniguchi and Sugeno, 2010a; 2010b; 2012a] 
based on feedback linearization, where [Taniguchi and Sugeno, 
2010a] and [Taniguchi and Sugeno, 2012a] apply input-output 
linearization and [Taniguchi and Sugeno, 2010b] applies full-
state linearization. In feedback linearization, we design a state 
feedback controller that transforms a nonlinear system into an 
equivalent linear system. Feedback linearization is a very pow-
erful tool for synthesizing nonlinear control systems, but it is 
not always applicable because of strict linearization conditions, 
i.e., the linearizable region is often local.

For this reason, the last three decades have been spent study-
ing approximate linearization via feedback. Approximate 
linearization was proposed in the literature based on four 
streams [Taniguchi and Sugeno, 2012a]: partial linearization, 
linearization-oriented modeling, nonlinearity measures, and 
linear model matching.

This article deals with PML system I/O linearization along 
the line of approximate linearization, demonstrating that if 
nonlinear systems are modeled with PML systems, they be-
come easily and globally feedback linearizable with Look-Up-
Table (LUT) controllers. LUT controllers are widely used in 
industrial control, specifically, for vehicle control because of 
simplicity and visibility. PML modeling gives rise to approxi-
mation error. We proposed a method [Taniguchi and Sugeno, 
2012b] for robustly stabilizing PML systems, and approxima-
tion error in modeling is considered as discussed in [16]. These 
control systems have the following features: (1) Researchers 
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need only partial knowledge of vertices in piecewise regions, 
not overall knowledge of an objective plant. (2) These control 
systems are applicable to a wider class of nonlinear systems 
than conventional I/O linearization. (3) The PML model and 
controller are represented as an LUT.

This article is organized as follows. Section II presents the 
canonical form of PML models. Section III proposes the design 
of LUT controllers for nonlinear plants based on PML models 
and I/O linearization. Section IV presents examples demon-
strating the feasibility of the proposed methods. Section V 
summarizes conclusions.

2.  Canonical form of piecewise bilinear models
2.1  Open-loop systems

In this section, we introduce the PML models suggested in 
[Sugeno, 1999]. We deal with the two dimensional case without 
loss of generality.

We assume that w1
σ and w2

τ are normalized membership func-
tions of a triangular form. Figure 1 shows the normalized trian-
gular membership function w1

σ(x1). Define a vector d(σ, τ) and a 
rectangle Rστ in the two-dimensional space as, respectively,

d(σ, τ) ≡ (d1(σ), d2(τ))
T,

Rστ ≡ [d1(σ), d1(σ + 1)] × [d2(τ), d2(τ + 1)].    (1)

σ and τ are integers: –∞ <  σ, τ < ∞ where d1(σ) < d1(σ + 1), d2(τ) 
< d2(τ + 1) and d(0, 0) ≡ (d1(0), d2(0)T. The superscript T denotes 
transpose operation.

For x ∈ Rστ, the PML system is expressed as

x = Σ Σ wi
1(x1)w j

2(x2)fo(i, j),
σ + 1 τ + 1

•

i = σ j = τ

x = Σ Σ wi
1(x1)w j

2(x2)d(i, j).
σ + 1 τ + 1

i = σ j = τ

{   (2)

A key point in the system is that the state variable x is also 
expressed by a convex combination of d(i, j) with respect to 
wi

1(x1) and wj
2(x2) just as in the case of x4 . x is located inside Rστ 

which is a rectangle: a hypercube in general. Thatis, the expres-
sion of x is polytopic with four vertices d(i, j). The model of x4  = 
f(x) is built on a rectangle including x in the state space and it is 
also polytopic with four vertices f(i, j).We call this form of the 
canonical model (2) parametric expression.

Representing x4  with x in Eq. (2), we can obtain the state 
space expression of the model which is found to be multilinear 
[Sugeno, 1999]. Therefore, the derived PML model has simple 
nonlinearity. In the case of the PL approximation, a PL model 
is built on simplexes partitioned in the state space, triangles 
in the two dimensional case. Note that any three points in the 
three dimensional space are spanned with an affine plane: y = a 
+ bx1 + cx2. A PL model is continuous. It is, however, difficult 
to handle simplexes in the rectangular coordinate system.

Also we can see that any four points in the three dimensional 
space can be spanned with a bi-affine plane: y = a + bx1 + cx2 + 
dx1x2. In contract to a PL model, a PML model as such is built 
on rectangles with the four vertices d(i, j), on hyper-cubes in 
a general dimensional space, partitioned in the state space; it 
well matches the rectangular coordinate system. Therefore, 
PML models would be applicable to control purpose.

2.2  Closed-loop systems
We consider a two-dimensional nonlinear control system.

{ x
4  = fo(x) + go(x)u(x),

 y = ho(x).  
(3)

The PML model (4) can be constructed from the nonlinear sys-
tem (3).

{ x
4  = f(x) + g(x)u(x),

 y = h(x),  
(4)

where

f(x) = Σ Σ wi
1(x1)w j

2(x2)fo(i, j),
σ + 1 τ + 1

i = σ j = τ

g(x) = Σ Σ wi
1(x1)w j

2(x2)go(i, j),
σ + 1 τ + 1

i = σ j = τ{ h(x) = Σ Σ wi
1(x1)w j

2(x2)ho(i, j),
σ + 1 τ + 1

i = σ j = τ

x = Σ Σ wi
1(x1)w j

2(x2)d(i, j),
σ + 1 τ + 1

i = σ j = τ

   (5)

and fo(i, j), go(i, j), ho(i, j) and d(i, j) are the vertices of the non-
linear system (3).

The modeling procedure in the region Ris as follows.

• Assign vertices d(i, j) for x1 = d1(σ), d1(σ + 1), x2 = d2(τ), d2(τ 
+ 1) of the state vector x, then the state space is partitioned 
into piecewise regions, see also Figure 2.

Figure 2: Piecewise region ( f1(x), x ∈ Rστ)
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• Compute the vertices fo(i, j), go(i, j) and ho(i, j) in equation 
(5), by substituting the values of x1 = d1(σ), d1(σ + 1) and x2 
= d2(τ), d2(τ + 1) into original nonlinear functions fo(x), go(x) 
and ho(x) in the system (3). Figure 2 illustrates the expres-
sion of f(x) and x ∈ Rστ.

The overall PML model can be obtained automatically when 
all the vertices are assigned. Note that f(x), g(x) and h(x) in the 
PML model coincide with those in the original system at the 
vertices of all the regions.

3.  Design of LUT controllers for nonlinear systems with PB 
modeling and I/O linearization  

This section deals with the I/O linearization of nonlinear 
control systems approximated with PML models. We con-
sider, in particular, nonlinear systems of the second and third 
orders and show their I/O linearization based on PML models 
in detail. We also show that in the case of PML systems, the I/
O linearization (the feedback-linearization in general) may be 
applicable to a global region by avoiding the restrictions of the 
conventional linearization of nonlinear control system: the re-
striction concerning the relative degree.

A nonlinear system is not always feedback-linearizable since 
the linearization conditions are not always satisfied. For in-
stance, as is often the case, the relative degree is only defined 
in a restricted region. This problem is discussed in [Shankar, 
1999]. There is even the case that the relative degree is not de-
fined at the origin and, hence, the exact feedback linearization 
is not applicable. For such cases, various methods of approxi-
mate linearization have been suggested. As one of the meth-
ods, there is an idea to approximate a nonlinear system with 
a feedback-linearizable nonlinear system. The PML system is 
found to be easily linearizable and also, as is stated, it is a uni-
versal approximator for nonlinear systems. Therefore, the PML 
system can be also used in this context as a model of nonlinear 
systems for the feedback linearization.

4.  Numerical example
Consider the following nonlinear system:

x = fo(x) + gou(x) = (         ) + (   ) u,

y = ho(x) = x1,

•{ sin x2
–x2

1

0
1   (6)

Using the ordinary I/O feedback linearization, we design the 
linearizing controller for the nonlinear system (6)

u =                           = –x2
1 +              v

–L2
foho(x) + v

LgoLfoho(x)
1

cos x2

  (7)

The operation region of x2 in (6) is considered in [–π, π], but 
the controller (7) cannot be applied to stabilize the nonlinear 
system (6) in the outside of –π / 2 < x2 < π / 2, since the relative 
degree is not defined at x2 = ±π / 2.

Now divide the state space of the nonlinear system (6) as x1 
∈ {–2.0, –1.5, –1.0, –0.5, 0, 0.5, 1.0, 1.5, 2.0} and x2 ∈ {–7π / 6, 
–π / 4, 0, π / 4, 7π / 6}, then the PML model is constructed as

x = f (x) + gu(x) = (         ) + (   ) u,

y = h(x) = x1,

•{ 0
1

f1(x)   
f2(x)   

where

f1(x) = Σ w j2(x2)f1(•, j),  f2(x) = Σ w i1(x1)f2(i, •),
τ + 1

j = τ

f1(•, j) = f1(p, j),  f2(i, •) = f 2(i, q),

σ + 1

i = σ

p = σ, σ + 1,  q = τ, τ + 1.

The PML models of f1(x) and f2(x) are shown in Table 1. We de-
sign the LUT controller from u(x) shown at (8) as is explained

u(x) =                   +                  v
–L2

f h(x)
LgLf h(x)

1
LgLf h(x)   

(8)

where

v = –Kz = –(1.31 0.938) z.

The LUT controller can be applied to the outside of the bound –
π / 2 < x2 < π / 2 because LgLfh(x)  0. Table 2 shows the vertices 
of the LUT controller. The LUT controller can apply to stabilize 
the wider region than the I/O linearization controller (7). In fact, 
we obtain from the original system (6) that LgLfh(x) = (sin d2(τ 

f1(i, j) d2(–2) d2(–1) d2(0) d2(1) d2(2)

d1(–4) –0.866 –0.707 0 0.707 0.866

d1(–3) –0.866 –0.707 0 0.707 0.866

d1(–2) –0.866 –0.707 0 0.707 0.866

d1(–1) –0.866 –0.707 0 0.707 0.866

d1(–0) –0.866 –0.707 0 0.707 0.866

d1(1) –0.866 –0.707 0 0.707 0.866

d1(2) –0.866 –0.707 0 0.707 0.866

d1(3) –0.866 –0.707 0 0.707 0.866

d1(4) –0.866 –0.707 0 0.707 0.866

f2(i, j) d2(–2) d2(–1) d2(0) d2(1) d2(2)

d1(–4) –4.00 –4.00 –4.00 –4.00 –4.00

d1(–3) –2.25 –2.25 –2.25 –2.25 –2.25

d1(–2) –1.00 –1.00 –1.00 –1.00 –1.00

d1(–1) –0.25 –0.25 –0.25 –0.25 –0.25

d1(–0) 0 0 0 0 0

d1(1) –0.25 –0.25 –0.25 –0.25 –0.25

d1(2) –1.00 –1.00 –1.00 –1.00 –1.00

d1(3) –2.25 –2.25 –2.25 –2.25 –2.25

d1(4) –4.00 –4.00 –4.00 –4.00 –4.00

Table 1: PB models of f1(x) and f2(x)
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+ 1) – sin d2(τ)) / (d2(τ + 1) – d2(τ)) which is, in the current parti-
tion of the state space, not 0 for all x2 ∈ [–π, π], while in the I/O 
linearization of the original system, LgLfh(x) = cos x2. Figure 3 
shows the simulation results in the initial condition x(0) = (1, 2)T.

5.  CONCLUSIONS
We have proposed the stabilization of nonlinear control sys-

tems approximated with PML models based on the inputoutput 
linearization. The designed controller is represented by the LUT. 
Also we have shown that by applying PML models to nonlin-
ear control systems, we may drastically enlarge the feedback-
linearizable region, since the relative degree is well defined.

Through the examples, we have shown that a combination of 
the PML modeling and the feedback-linearization could be a 
very powerful tool for the analysis and synthesis of nonlinear 
control systems. The PML system could be considered as a 
feedback-linearizable approximation model for nonlinear sys-
tems. An illustrative example has been given to show the valid-
ity of the proposed methods.

Now we are researching a tracking control for vehicle control 
systems. We are aiming to realize an unmanned vehicle control 
using our methods. We assume unmanned vehicle controls will 
become more important in our life, especially for overseas travel-
ers. In most countries, right-hand traffic has been adopted as a 

traffic rule. So it might be difficult for overseas travelers to drive 
in Japan. Now overseas travelers are expected to increase, the un-
manned technology will become all the more crucial for Japan.
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u1(i, j) d2(–2) d2(–1) d2(0) d2(1) d2(2)

d1(–4) 41.7 31.6 6.91 6.09 9.44

d1(–3) 34.6 24.5 4.43 3.61 2.29

d1(–2) 27.9 17.8 2.45 1.64 –4.36

d1(–1) 21.8 11.7 0.978 0.161 –10.5

d1(–0) 16.1 6.06 0 –0.817 –16.1

d1(1) 11.0 0.909 –0.478 –1.29 –21.3

d1(2) 6.36 –3.74 –0.457 –1.27 –25.9

d1(3) 2.20 –7.90 0.063 –0.754 –30.1

d1(4) –1.44 –11.5 1.08 0.266 –33.7

Table 2: LUT controller of u(i, j)

Figure 3: Simulation result of two-dimensional case
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