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Abstract
The number of bike-sharing services has rapidly increased in many cities worldwide. One of the main challenges of the bike-sharing 
system operation costs is allocating enough bikes and parking space. This paper presents a model for solving the bike-sharing relo-
cation problem. The artificial bee colony (ABC) algorithm is an efficient approach, but it is still insufficient for the selection strategy. 
ABC has been adopted in various problems to improve the performance of various systems. This research proposed a modified ABC 
algorithm in a neighbor solution to enhance the solution performance, namely guided local search (GLS), to apply to the design route 
for transportation while truck relocation bikes each station in the bike-sharing system. Computational experiments were performed 
to find out the best modeling solution in the case. The implementations were experimental for the same data instances, which made 
it possible to compare the performance algorithms so as to solve the bike-sharing relocation problem of the pickup and drop off. The 
results showed that the GLS-ABC method can be a better solution than the original one. The statistically significant p-value of the 
mean objective value of the different algorithms was smaller than 0.05. Thus, the impact of minimizing the route tour cost in solving 
the bike-sharing relocation problem.
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1.  Introduction
Tourism has become increasingly essential worldwide. Ac-

cording to many statistics, the number of tourists tends to 
continuously increase, especially in Japan [Japan Tourism 
Statistics, 2020]. Furthermore, tourism is related to travel, so 
transportation is vital for moving passengers and goods from 
one point to another. Travelers have various cost expenses and 
satisfaction factors that impact their preferred modes of trans-
portation, which include driving, walking, using a taxi, or us-
ing a bike-sharing service.

In response to saving time, common short travel distances, 
and multimodal transportation connections, bike-sharing ser-
vices have made bike rentals available for travelers and tourists 
so that they can rent bikes and return them at any station. Most 
bike-sharing systems provide automatic systems for users and 
operators so that customers can just use their smartphones to 
locate available bike stations, which makes it easier and more 
convenient to attract more customers. Recently, the frequency 
of using bike-sharing services has significantly increased due 
to the popularity of green travel, as many people have become 
more aware of pollution and other common health issues. 
Moreover, due to the increase in carbon dioxide (CO2) levels, 
many people are taking more measures to reduce greenhouse 
gas emissions in every economic sector.

However, with the increasing popularity of bike-sharing ser-
vices, many problems have arisen, including problems during 
peak hours, not enough bikes at some stations, etc. Also, some-

times, there are no available parking spaces to return bikes, 
especially in residential areas or near train stations. Thus, the 
operators of bike-sharing systems face many challenges when 
it comes to the allocation of enough bikes and parking spaces. 
This problem can be solved by determining the route of reloca-
tion bikes, which includes the picked up and returned bikes. 
Thus, cost-efficient operation can be used to guarantee profit 
maximization optimization. Moreover, customer satisfaction 
is important so customers can continue using the service, and 
it is also important for increasing the number of customers and 
improving service reliability.

Many researchers have found that the artificial bee colony 
(ABC) algorithm can be used to effectively solve capacity vehi-
cle routing problems [Szeto et al., 2011]. This paper presents a 
newly developed method for efficiently exploring an ABC algo-
rithm to solve the bike-sharing relocation problem and reduce 
the operating costs along with determination of the minimum 
cost based on the vehicle routing distance while bike relocation 
operations maintain a sequence of visiting each station.

The rest of the paper is organized as follows. In Section 2, 
we explained other related works concerning the relocation 
problems of bike-sharing. Then, the main bike-sharing reloca-
tion problem was described in Section 3. We briefly explained 
the main algorithm for solving the bike-sharing relocation 
problem in Section 4. Then, the proposed algorithm for en-
hancing the ABC algorithm’s exploitation capability in solving 
the bike-sharing relocation problem was described in Section 5. 
The results were discussed in Sections 6-7. Finally, the conclu-
sions and future work were presented in Section 8.
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2.  Related work
Recently, bike-sharing systems have received a lot of atten-

tion from researchers. Operational relocation can be classified 
into two groups. The first group includes user-based strategies, 
which incentivize users to participate and encourage them to 
voluntarily relocate their rented bikes. Such strategies include 
static pricing and dynamic pricing strategies. Singla et al., 
[2015] presented a crowdsourcing mechanism for dynamic pric-
ing, which enabled the calculation of each station’s incentive 
values and the development of a dynamic incentives system by 
offering incentive amounts to users and utilizing smartphone 
applications. The second group includes operator-based strate-
gies, where relocation operators work on optimizing the pickup 
and delivery costs. Erdoğan et al. [2015] presented an exact al-
gorithm using a branch-and-cut algorithm which utilizes com-
binatorial Benders’ cuts to separate infeasible solution from the 
feasible region to solve the static bicycle rebalancing problem 
by determining the minimum cost sequence of the stations to 
be visited by a single vehicle. Cruz et al. [2017] presented an it-
erated local search heuristic for solving the bicycle rebalancing 
problem. Gajpal and Abad [2009] proposed a construction rule 
in Ant Colony Optimization as two multi-route local searches 
to solve VRP with simultaneous delivery and pickup. Shui and 
Szeto [2017] offered a dynamic green bike repositioning prob-
lem that simultaneously minimizes the total unmet demand of 
bike-sharing systems and the fuel and CO2 emission costs of 
repositioning vehicles. The solution method was based on the 
ABC algorithm.

Numerous studies on bike-sharing systems have proposed 
solutions for the rebalancing problem for operating a vehicle 
routing. Consequently, the underlying vehicle routing problem 
has received the most attention. In our study, we have pro-
posed the effectiveness of the solution. We also modified the 
efficiency of the swarm-based metaheuristic algorithm, ABC, 
and enhanced its search efficiency in solving the bike-sharing 
relocation problem.

3.  Bike-sharing relocation problem description
3.1  Problem description

Bike-sharing relocation is a part of VRP that can be applied 
to relocation. Battarra et al. [2014] classified the VRP as widely 
treated pickup and delivery problems (PDP). PDP is a kind of 
VRP where goods must be transported from different origins to 
different destinations, and it is divided into three classes. The 
first class is one-to-one (1-1), where each good and request are 
provided with a pair of origin and destination. The second class 
is the One-to-Many-to-One (1-M-1), which represents how 
some goods must be delivered from a depot to customers and 
how other goods must be recollected from the customers and 
carried back to the depot. The third class is Many-to-Many (M-
M), which represents how each good can have various origins 
and destinations and how any location can be the origin and 
destination. The problem of relocating bikes in a bike-sharing 
system lies in this class.

The model for solving vehicle routing problems for deliveries 
and pickups (VRPDP) aims at minimizing the cost or distance 
by providing customers with the allocation of vehicle routes for 
truck trips to service customers. One limitation that must be 
considered is the vehicle loading capacity. Although this is a 
significant problem, it is not extending VRP due to the lack of 
multiple travel plans. Customers receiving goods from a depot 
are called linehaul or deliveries. Customers who send goods 
back are called pickup or backhauls. It is possible that custom-
ers may want to both send and receive goods at the same time. 
This case is called combined demands. Also, in bike-sharing 
relocation, a customer at a station may need to pick up or drop 
off a bike [Usama et al., 2020]; hence, it is possible to adopt 
VRPDP with combined demand in solving this problem. This 
can be modeled using integer linear programming models, 
which involve minimizing the cost or distance. Starting from 
the depot, the truck drives to visit each station exactly once to 
drop off or pick up a bike for relocation. Then, the truck must 
be back to the depot. The problem can be defined on a graph 
G = (V, A), where V = {1...., n} is a set of nodes (stations) in a 
depot located at node 0, and A = {(i, j): i, j  V i ≠ j} is a set of 
arcs (distance between each pair of vertices). Each station i has 
a demand ddi or pdi, where pdi denotes the pickup bikes that 
must be removed at station i, and ddi denotes the drop off bikes 
that must be supplied at station i. The bikes removed from the 
pickup stations can either go to a drop off station or back to the 
depot. The bikes supplied to a drop off station can either come 
from the depot or from a pickup station. Also, the feet of m 
is the limitation of the capacity Q of each available vehicle at 
the depot. This problem is related to determining a relocation 
while minimizing the total cost of a fleet with a number of (m) 
vehicles through the graph.

There are various methods to solve bike-sharing relocation 
as a vehicle routing problem. The Swarm Intelligence is an ef-
ficient method as the ABC algorithm [Karaboga and Basturk, 
2007], but it is still insufficient for the selection strategy. Ko-
raboga and Basturk [2008] and Pathak et al. [2017] proposed 
the modified ABC by using Local Search (LS). The GLS is a 
way to improve the selection strategy in the ABC algorithm 
because the GLS gets the results better than LS [Kilby et al., 
1999]. To narrow the gaps of the previous research work, this 
paper proposes the modified ABC in a neighbor solution to 
enhance the solution performance, namely GLS to improve the 
solution performance to apply in bike-sharing relocation prob-
lem as follows in Section 5.

3.2  Mathematical modeling for the bike-sharing problem
According to [Wassan and Nagy, 2014], with the objective 

of minimizing the total cost, a model was proposed for solving 
the VRPDP in order to make the mathematical model of the 
bike-sharing problem mimic VRPDP. The mathematical model 
for minimizing the total cost in this problem was defined as 
follows:
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Parameter
Dij: Distance between the station locations i and j
ddi: Drop off demand of station i
pdi: Pickup demand of station i
Q: Vehicle capacity (number of bikes)
m: Number of vehicles
Drij: Number of drop off on board on the arc ij
Puij: Number of pick up on board on the arc ij
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The objective function is to minimize the total travel dis-
tances of all trucks drivers for bike relocation that define the 
feasible solutions of the routes given the constraints. Con-
straints (2) and (3) ensure that the vehicle must only visit sta-
tions. Constraint (4) and (5) guarantee that the flow conserva-
tion constraints are met. Constraints (6) and (7) confirm that 
the vehicle starts at the depot with zero pickup bikes and fin-
ishes with zero drop off bikes. Constraint (8) make sure that the 
vehicle picks up and drops off loads at any customer location 
within the vehicle load capability. Constraint (9) verify that the 

vehicle leaves from the depot, and constraint (10) is a binary 
variable.

4.  Trial and error of the algorithm for solving relocation 
bike-sharing

To solve the vehicle routing problem, researchers have pro-
posed a variety of methods, such as the exact, heuristic, and 
metaheuristic methods. Mathematical models can be used to 
solve such problems and to explain various problem aspects. 
Likewise, metaheuristic methods, such as the genetic algorithm 
or ABC algorithm, have been applied to solve such problems.

The most common relocation operation problem that exists 
all day every day is the bike-sharing relocation operation prob-
lem, and it can either be static or dynamic. The static problem 
is when relocation is performed on a predetermined schedule 
when a system is closed or minimally operating at night. The 
dynamic problem is when relocation occurs in the daytime 
when the system rapidly changes and needs relocation. Essen-
tially, for bike-sharing relocation systems in small or medium 
cities, the bikes are often carried out at night using a vehicle 
that visits each station exactly once. Many researchers pro-
posed methods for solving the vehicle routing problem to find 
out the minimizing cost. Using the exact method (genetic algo-
rithm (GA)) [Katoch et al., 2020], that has been widely used in 
various real-life applications, we used a trial-and-error experi-
ment to compare the performances of the well-known in the lit-
erature and those of different kinds of optimization algorithms 
consisting of mixed intergenerational problems (MIP). The 
representation of chromosomes is closely associated with real-
life problems. The main advantages of GA are that it is robust, 
efficient, and accurate, and the artificial bee algorithm (ABC) 
[Kumar et al., 2017; Okoro et al., 2019] has become one of the 
most common optimization methods in the field of artificial 
intelligence since it was first conceived in the early nineties. As 
a result, many research works elaborated on the value of using 
it in well placement optimization to solve the bike-sharing re-
location problem. Gurobi solved such problems using MIP. GA 
and ABC were coded in Python.

In the trial-and-error experiments, the ABC algorithm 
showed the best performance, but it took a long time com-
pared with the other methods. We aimed at modifying the 

Number of stations
Algorithm

MIP GA ABC

10
Avg. (km.) 348.96 291.57 282.84

CPU time (S.) 9.12 1.96 8.29

20
Avg.(km.) 303.29 313.15 302.05

CPU time (S.) 10.23 2.8 10.25

30
Avg.(km.) n/s 567.70 423.90

CPU time (S.) > 24hr. 2.98 20.56

Table 1: Comparison of the performances of the experimental 
results for each algorithm
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performance of the ABC algorithm in solving the bike-sharing 
relocation problem. The results were consistent with those of 
Rothlauf [2011], who proposed an exact optimization method 
that guaranteed finding an optimal solution. Also, using heu-
ristic optimization methods, there were no guarantees that an 
optimal solution can be found. Usually, the exact optimization 
method is a choice method if it can solve an optimization prob-
lem with an effort that polynomially grows with the problem 
size. The situation is different if the problems are NP-hard, as 
exact optimization methods need exponential effort. Then, even 
medium-sized problem instances often become intractable and 
cannot be solved anymore using exact methods. To overcome 
these problems, heuristic optimization methods can be used. 
Binitha and Sathya [2012] presented the GA algorithm to solve 
the convergence problem for local minima or maxima. Further, 
GA was unable to effectively solve constrained optimization 
problems.

5.  Modified ABC algorithm
5.1  The original ABC

In 2005, Karaboga [2005] developed the ABC algorithm 
[Basturk and Karaboga, 2006], which is a method for solving 
optimization problems. The algorithm imitates the behaviors 
of bees when searching for food (Honeybees). The bee colony 
population is divided into three groups: employed bees, on-
looker bees, and scouts. The employed bees search for food and 
then came back to share information about food sources to the 
onlooker bees, which search their nests, inspect the selected 
food sources, and compare them with the food sources nearby. 
This algorithm improves the ability of exploring and finding 
the best solution (optimization algorithm) using scout bees, 
which guide the mutation process to the algorithm by search-
ing for new food sources in the previously unexplored areas of 
the survey area to increase the chances of finding better food 
sources. Then, the selected food sources are discarded and 
transformed from the employee bees to the scout bees so as 
to find new food sources. The location of a food source is the 
value of a possible answer. The number of employed bees and 
scout bees combined is the total number of possible solutions 
by finding food sources.

The ABC algorithm is an efficient approach for solving the 
vehicle routing problem. Nevertheless, this algorithm has not 
been confirmed as a global solution, but it provides optimal so-
lutions for NP-hard problems [Karaboga and Akay, 2009].

Step 1: Initial population creation of all bees with location of 
food sources chosen by random selection (initial phase) based 
on Equation (11) where i = 1,… SN, SN is indicate the number 
of food sources, and j = 1, …, D, and D is the dimension of the 
problem.

[ ]( )min max min0,1ij j j jx x rand x x= + −   (11)

Step 2: Employed bee phase. The employed bees search for 
new food sources based on Eq. (12), where vij is the new solu-

tion in the next generation, Ø is the value obtained from the 
randomness in the range of 0-1, i ϵ{1, 2,…, SN}, SN is the size 
of colony, j ϵ{1, 2,…, D}, and D is the dimension of the prob-
lem. Then, the suitability is calculated based on Eq. (13) if the 
new position value is better than before to update the position 
to a new value.
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where x denotes the vector answers from random,
i is the population,
j is the parameter value,
fi (xi) is the x objective function value,
fitij (xi) is the fitness value solution of the food source.

Step 3: Onlooker bee phase. The onlooker bees consider the 
obtained food sources from the employed bees using a prob-
ability that can be obtained from equation (14), where pi is the 
selection probability of the current solution. If the food source 
has high probability, it is very likely to be chosen. Then, the 
onlooker bees send the selected data for calculation in order to 
find more suitable food sources, just as the employed bees.

1
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i ii
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where fiti is the fitness value of solution i, which is proportional 
to the nectar amount of the food source in position i, and τ is 
the number of food sources, which is equal to the number of 
employed bees or onlooker bees.

Step 4: Scout bee phase. When the original food sources of 
the employed bees are not selected by the onlooker bees, the 
scout bees calculate the new food sources by randomly replac-
ing those that were not selected.

Step 5: Condition satisfied. The bees stop searching when 
finding the best food source. Otherwise, they go back to Step 2 
again until max iterations.

The ABC is still a qualification of poor exploitation [Gao et 
al., 2012]. This causes capturing in the optima areas and results 
in slower convergence rates, thus tackling various problems. In 
the past, many researchers modified the basic ABC structure. 
The proposed variable was named LS-ABC (local search based 
ABC). The performance was tested on more than 12 standard 
functions [Sharma and Pant, 2013]. Pathak [2017] presented an 
enhanced ABC algorithm with local search using an incremen-
tal approach for the traveling salesman problem.
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5.2  Local search
The local search strategy is a kind of constraint propagation. 

When solving constraint networks, local search strategies are 
often modified to discard the states that cannot be solutions 
and to rank the states that are still solution candidates. This 
idea has been applied to efficiently explore large neighborhoods 
[Meseguer, Rossi, and Schiex, 2006]. The local search algo-
rithm starts from a candidate solution, and iteratively moves 
to a neighbor solution. From the original ABC, in the onlooker 
bees’ states, a neighbor solution is only used for replacement 
when the onlooker bees find the best neighbor solution [Szeto, 
2011].

The local baseline search algorithm starts with an arbitrary 
solution and ends with a local minimum, which cannot be 
further improved. During these steps, there are several local 
search ways. For the best improvement, such as greedy selec-
tion, the local search replaces the current solution with the 
most cost-improving solution after searching the entire neigh-
borhood. The local search method can quickly resolve optimal 
routing [Prosser and Shaw, 1997]. The limitations of the prob-
lem variance were also found to be quite high. We found the 
method to improve the operators in the steepest descent search 
strategy to avoid the local optima for reaching global optima 
as with the guided local search (GLS) algorithm [Kibly et al., 
1999]. To probably improve the efficiency of the solutions in 
the search process,

Guided local search (GLS) is an optimization technique 
which is an intelligent search algorithm that exploits informa-
tion to guide the local search in avoiding the local optimum 
[Voudouris, 1997; Voudouris et al., 2010; Kilby et al., 1999; 
Arnold and Sörensen, 2019]. The GLS solution modifies action 
from local search by augmented cost function of minimiz-
ing the problem objective function with the cost function to 
a penalty term that was applied by a penalty vector p, where 
pi is the penalty value of feature i. The GLS uses local search 
to minimize objective function by augmented objective func-
tion. Therefore, local search is performed via local search (S, 
p) function, staring from solution S and then returning to a 
new solution improved by the augmented objective h(S)which 
spread of penalties as follows:

( ) ( ) ( )i i ii M
h S O S p l S Cλ

∈
= + ∑   (15)

where O(S) is the original objective function problem. The Ci is 
a cost vector of feature i. pi is the penalty parameter and if the 
feature is not exhibited in the local optimum, then the penalty 
value is 0, when the local search is tapped, where the penalty 
parameters are incremented by 1. Penalty is the indicator in-
volving the feature i, which is the distance between customer 
location and other locations, and λ, a parameters to GLS, rep-
resents the relative value of penalties to control the information 
on the search process with respect to the actual solution cost. 
Arnold and Sörensen [2019] found that λ = 0.1 works well. 
A li is a Boonlean indicator in the solution feature i. The es-

sential effectiveness of GLS is the penalty parameters that are 
the costliest features in the current solution and are weighted 
by the number of times a feature has already been penalized. 
The penalties of the features are initialized to zero and are in-
cremented for the features that maximize the utility formula. 
After the improvement method when local search settles, the 
penalty factor was used to penalize the bad features of i. If they 
keep a local search in local optimization, the current solution, 
which has the most cost, is penalized by weighing the number 
of times. They choose the features i  S for which Ci/(pi + 1) is 
the largest among the features in S.

5.3  Proposed algorithm
This study proposed states for improving the performance 

of the ABC algorithm to solve the bike-sharing relocation 
problem, which is modified in the scout bee phase using lo-
cal search based on the neighboring operators. The proposed 
algorithm is called the GLS-ABC algorithm, and it was demon-
strated, as shown in Table 2.

We proposed a modified state so that xi is replaced by the 
best neighbor solution, which is a GLS that starts from a ran-
domly selected complete instantiation and moves to the next 
instantiation. This idea may prevent the bad regions of the so-
lution search.

The solution starts searching for the route tour that is clos-
est to the depot. Next, searching for stations makes addition of 
more routes feasible based on the demand of each station and 
the capacity of the truck’s delivery constraints.

The algorithm finds the best route by utilizing the cost func-
tion, which is determined from the distance between two sta-
tions and the demand of each station, under truck constraint 
considering the truck’s capacity possible load and unload itself.

For the fitness function, is equal to 1/Z(Xi), where Z(Xi) is the 
sum of the route distances of the food source Xi. Thus, the fit-
ness value inverses the total distance value; as such, the mini-
mized total distance affects the fitness value.

The problem was defined by N bike-sharing stations and a 
symmetric distance matrix, where D = [dij] gives the distance 
between any two stations i and j. The goal is to find the mini-
mum total distance for bike-sharing rebalancing based on the 
truck constraints; the truck starts from depot and visits each 
station exactly once, and after pickup or drop off, the truck 
must return to the depot.

6.  Experimental
6.1  Data

The experiments revealed that each depot provided service 
using capacitated vehicles for relocation bikes. Each truck can 
carry a maximum of 20 bikes. The illustrated dataset was used; 
each instance consisted of the coordinate of location, pickup 
demand, and drop-off demand. The coordinates of the bike-
sharing stations were randomly generated in a Euclidean plan. 
Also, the drop off and pick up demands of the bikes at each 
station were randomly generated to vary a dataset consisting of 
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Pseudocode of GLS-ABC 

Begin: 
Initialization of generate a set of food sources xi, i = 1,…, SN according to Eq.11 
Evaluate each xi, i = 1,…, SN according to Eq.11
Set v = 0 and li = 0, i =1, 2,…, Nb
While (v < MaxInteration) do
For i = 1 to SN do (employed bees)
Select a random solution according to Eq.12 
Calculate its fitness value of new food source according to Eq.13
Apply random neighborhood operator, GLS selection by 
Penalize the worst distance (i, j) by incrementing p(i)
Apply local search using Eq.15  

End for
Calculate the probability each food source according to Eq.14

For i = 1: (onlooker bees)
select a food source xi using fitness-based roulette wheel selection method.  

Apply neighborhood operator on xi → x̂, GLS selection by
Penalize the worst distance (i, j) by incrementing p(i)
Apply local search using Eq.15 

if  fi (xi) < fi (x̂i),  

select x̂j that is set of food sources with j is maximize of set of food sources,

replace x̂j with x̂,  
End if
End for
if li is limit, (determine abandoned solution for the scout)  

then using a neighborhood operator on xi → x̂, and replace xi with x̂.  
End if

Memorize the best solution.
V = V + 1

End while

Table 2: Pseudocode of the proposed algorithm
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Figure 1: Bike-sharing station distribution at each instance
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four instances as AA001-AA004.
We evaluated the performance of the proposed algorithm 

based on the locations of the customers using the Solomon 
problem [Solomon, 2005], which is classified into three types. 
First, the R data set having randomly distributed bike stations 
locations was generated in a problem consisting of R101 and 
R102. Second, the C data set have clustered bike stations loca-
tion distribution in a problem consisting of C101 and C102. 
Last, the RC data set have a mix of randomly located and clus-
tered bike stations distribution structures in a problem consist-

ing of RC101, and RC201, where each problem has 100 bike 
stations. The drop off and pick up demands of the bikes at each 
station were randomly generated.

The experiments considered how to operate a minimized to-
tal distance of the truck routing for bike-sharing relocation.

6.2  Evaluating the performance of the modified algorithm.
We evaluated the performances of the original ABC algo-

rithm (LS-ABC) and proposed ABC algorithm (GLS-ABC). 
The experimental design of each condition contains 20 rep-
licates (run 20 times) to improve the accuracy and reduce 
experimental errors. We set the number of employed bees and 
number of onlookers to be equal to the number of food sources 
(τ = 25) based on [Koraboga and Basturk, 2008], and each time 
the algorithm was run for 2,000 iterations [Szeto, Wub, and 
Ho, 2011]. The experiments were conducted in randomization, 
and the collected results consisted of the best total distance 
and average total distance. Then, the results were confirmed 
by statistically comparing the performances of the difference 
approaches. The paired t-test and analysis of variance method 
were used. The simple cost operation categories were divided 
into two groups: fixed cost groups may include the vehicle 
leasing cost and the diver’s salary, and the variable cost group, 
which is the fuel per meter, and vehicle maintenance. For re-
duce cost that change directly as the fuel cost per kilometer. 
Thus, this paper only presented the total travel distance. This 
paper has raised the issue of improving the routing efficiency 
for the bike-sharing relocation problem. Therefore, the critical 
point of the change was compared, namely the cost of fuel per 
kilometer.

  
7.  Results and discussion

The model for finding out the best solution was coded using 
Python and run on a computer (Intel core i7 CPU3.80 GHz PC 
with 16 GB RAM, Windows 10). The optimal solution results 
of the experiments consisted of the best objective value of the 
minimum total distance and the average total distance. We 
measured the performance using two methods: number of sta-
tions and data set type. The results of the various data of the 
number of stations were shown in Table 3, the CPU times were 
shown in Table 5, and the percentage improvement of the ob-
jective value (total distance) was compared between the origi-
nal ABC and LS- ABC, and the original ABC and GLS- ABC. 
Furthermore, the p-value of the t-test of the comparative mean 
objective values between the algorithms based on the original 
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Figure 2: Bike-sharing station distribution at each instance us-
ing difference types (Solomon Problem)

Instance Number of 
stations

Average Best

ABC LS-ABC GLS-ABC ABC LS-ABC GLS-ABC

AA01 30 423.9 379.08 361.82 371.91 311.24 301.12

AA02 40 568.22 504.36 500.75 561.86 481.94 460.04

AA03 50 876.67 751.44 728.82 811.62 730.41 721.8

AA04 100 1907.87 1559.15 1530.12 1772.31 1469.9 1447.74

Table 3: Comparing ABC, LS-ABC, and GLS-ABC
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ABC was shown in Table 4. From Tables 3 and 6, regarding the 
test results of the total distance and average tour distance of 
the bike-sharing relocation problem, the GLS-ABC algorithm 
improved the total distance by more than 3 % at each instance 
and on average distance by more than 10 % at each instance. 
The original ABC was statistically significant with the LS-
ABC and the GLS-ABC via p-value < 0.05 at each instance 
for both total and average distance. Nevertheless, as shown in 
Table 5, the GLS-ABC took more time than LS-ABC and the 
original ABC. Overall, the test results show that the GLS-ABC 
algorithm can produce much better solutions than the original 
ABC and the LS-ABC in regard to solving bike-sharing reloca-

tion problems.
Table 4 shows that the GLS-ABC algorithm improved both 

the average and best total distances compared with the basic 
ABC algorithm and LS-ABC algorithm. The essential opera-
tion cost is a variable cost of the fuel cost per kilometer. The 
results showed that the GLS-ABC algorithm is most likely bet-
ter in reducing the bike-sharing relocation cost.

8.  Conclusion
The bike-sharing relocation problem involves customer satis-

faction and the benefits of bike-sharing service providers. Also, 
bike-sharing services are alternative transportation options for 

Instance

Average Best

LS-ABC GLS-ABC LS-ABC GLS-ABC

% P-Value % P-Value % P-Value % P-Value

AA01 10.57 0.00000000 19.02 0.000 16.3 0.01090 14.65 0.0101000

AA02 3.87 0.00000000 18.12 0.000 14.2 0.00690 11.87 0.0005000

AA03 14.29 0.00000000 10.20 0.000 10.0 0.00000 17.67 0.0000000

AA04 18.28 0.00000000 18.31 0.000 17.1 0.00000 19.80 0.0000000

Table 4: Comparison of the improvements of the experiment results for LS-ABC and GLS-ABC

Instance
CPU time (in seconds)

P-Value
ABC LS-ABC GLS-ABC

AA01 20.56 26.73 57.75 2.30E-11

AA02 20.67 28.13 64.31 3.90E-18

AA03 17.84 27.75 80.45 2.44E-10

AA04 30.70 47.02 120.14 8.19E-19

Table 5: Comparison of the CPU times of the experiment results for ABC, LS-ABC, and GLS - ABC

Instance
Average Best

P-Value
ABC LS-ABC GLS-ABC ABC LS-ABC GLS-ABC

C101 910.84 882.80 862.80 854.50 822.42 818.70 0.0154093746180301

C202 1038.19 1012.44 1002.44 987.82 947.32 930.10 6.1318625805E-13

R101 1061.59 1023.04 1010.12 970.30 956.94 944.35 0.00276636

RC101 1174.39 1132.31 1110.71 1045.79 1027.40 980.50 0.0168624951943672

Table 6: The experiment results of the different types of data sets for ABC, LS-ABC, and GLS-ABC
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Figure 3: Comparisons of the different types of data sets of the experiment results
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many travelers and locals, and they offer an environmentally 
friendly and healthy transportation method. In this paper, an 
alternative algorithm was presented to solve the bike-sharing 
relocation problem. The ABC algorithm could effectively find 
a solution for the routing problem. We modified the original ar-
tificial bee colony to improve the effective solution, and the re-
sults showed that the modified algorithm is better than the orig-
inal ABC algorithm and GLS-ABC in regard to diminishing 
the bike-sharing relocation problem. The GLS-ABC algorithm 
could also offer better solutions than those of the original one. 
The operational costs could be reduced by reducing the vehicle 
fuel cost. However, the proposed algorithm took a longer time 
than the original one. In the future, we aim to use the proposed 
algorithm to solve other real data set in real situations. Also, 
we aim to breakeven the number of times for rebalancing a day 
and to develop a different algorithm. Then, one may consider 
being served with uncertain demand with unknown distribu-
tions, which is similar to the real situation.
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