Response characteristics of CO_2 gas sensors using KSmSi₂O₆ as electrolyte and Li₂CO₃/ K₂CO₃ as sensing electrode

Susumu Nakayama (Department of Applied Chemistry and Biotechnology, National Institute of Technology (KOSEN), Niihama College, s.nakayama@niihama-nct.ac.jp, Japan)

Abstract

Two types of solid-state electrochemical cells were designed and their CO_2 gas-sensing characteristics were compared. One was a heterojunction-type sensor, whereas the other was a conventional homojunction-type sensor. A potassium ionic conductor was used as the solid electrolyte and lithium carbonate (Li₂CO₃) or potassium carbonate (K₂CO₃) were used as the sensing electrodes. The electromotive force (EMF) of the cell, having Li₂CO₃ as the electrode (heterojunction-type sensor), increased linearly with an increase in the partial pressure of CO_2 gas. Similar behavior was observed in the cell using the K₂CO₃ electrode (homojunction-type sensor). The slopes of Nernst's equation suggest that the two-electron reduction associated with the carbon dioxide molecules occurs on the sensing electrode. The EMF of the heterojunction-type sensor showed excellent performance, and the 90% EMF response time of this sensor at 450 °C was only a few minutes on changing the carbon dioxide partial pressure.

Key words

potassium samarium silicate, ceramics, ionic conductivity, lithium carbonate sensor, potassium carbonate sensor

1. Introduction

Commercially available solid electrolyte type and infrared absorption type sensors are typically used for carbon dioxide (CO₂) detection. The solid electrolyte type CO₂ sensor is advantageous in terms of miniaturization and cost reduction. Alkali or alkaline earth metal ionic conductors are gaining attention as solid electrolytes for CO₂ gas sensors owing to their high conductivity in the temperature range where their carbonates can stably exist (Yamamoto et al., 2020 and Zhu et al., 2013). There are many types of CO₂ gas sensors, such as sensors composed of Mg₁₁₅Zr₄P₅₇Si₀₃O₂₄ as a solid electrolyte and Na₂CO₃ or K₂CO₃ as the sensing electrode; or a NASICON (Na Super Ionic CONductor, Na₃Zr₂Si₂PO₁₂) disc as the solid electrolyte, (Li-Ba)CO₃ as the sensing electrode, and (Na-Ti-O) as the reference electrode (Ikeda et al., 1995; Pasierb et al., 2003; 2004; Shgau et al., 2004). In the present work, two different types of CO₂ gas sensor devices were designed using alkali-metal rare earth silicates, KSmSi₂O₆, as solid electrolytes for CO₂ gas sensing over a wide temperature range of 300-600 °C (Aung et al., 2005; Nakayama et al., 1995; 1997; 1998). The ionic conductivity of KSmSi₂O₆ ceramic is approximately two orders of magnitude lower than that of Nasicon ceramic—which is the most studied solid electrolyte for CO₂ sensors; however, it has good sinterability, can produce dense bodies, and has excellent gas shielding properties. Among large ion-sized potassium, rubidium, or cesium ionic conductive ceramics, the ionic conductivity of KSmSi₂O₆ ceramic is extremely high. The ionic conductivity in the operating temperature range (300-600 °C) of solid electrolyte CO₂ sensors

is sufficient for CO₂ detection. First is a conventional homojunction-type sensor, in which KSmSi₂O₆ is combined with potassium carbonate (K₂CO₃) as a sensing electrode. Second is a heterojunction-type sensor that uses lithium carbonate (Li₂CO₃) as the sensing electrode. By using potassium ion conductive KSmSi₂O₆ ceramic, the difference in the ion size of the alkaline species of a sensing electrode can be increased. Furthermore, the response characteristics of the two devices as CO₂ gas sensors were compared.

2. Experimental procedure

To prepare the KSmSi₂O₆ ceramics, K₂CO₃, Sm₂O₃, and SiO₂ were mixed in ethanol using a ball mill. The mixture was then dried and calcined in air for 2 h at 800 °C. The obtained powder was again ball-milled into a finer powder and dried. It was then converted into a disc by pressing at 100 MPa and sintering at 1050 °C for 2 h. The resulting microstructure was observed using scanning electron microscopy (Hitachi X-560). The diameter and thickness of the disc after sintering were 8 and 2 mm, respectively. The disc was baked at 800 °C after both sides were coated with a Pt paste. Electrical conductivities were measured with a multi-frequency LCR meter (HP 4192A) in the frequency range of 100 Hz to 10 MHz and temperature range of 300 to 600 °C. The CO₂ gas sensors were composed of the following solid-state cell:

Heterojunction type

(–) air, Pt | KSmSi₂O₆ | Pt, Li₂CO₃, CO₂, O₂ (+)

Homojunction-type

 (-) air, Pt | KSmSi₂O₆ | Pt, K₂CO₃, CO₂, O₂ (+)

The hetero- and homojunction-type sensors use Li_2CO_3 and K_2CO_3 as the sensing electrodes, respectively. The sensor

Figure 1: Schematic of CO₂ gas sensor

structure is shown in Figure 1. After both the sides (counter and sensing electrodes) of the KSmSi₂O₆ disc were coated with Pt paste, the disc was baked at 800 °C for 30 min, and both sides were connected by Pt wires. Then, one of the Pt electrodes was immersed in an aqueous solution of M₂CO₃ (M = Li or K) and dried to prepare the sensing electrode. This sensor system was fixed to one end of an alumina pipe with glass cement to shield the counter electrode from the CO₂ atmosphere. The standard CO₂ gases (1 × 10⁻⁵ atm-, 1 × 10⁻⁴ atm-, 1 × 10⁻³ atm- and 1 × 10⁻² atm-CO₂) diluted with synthetic air were purchased from Sumitomo-seika Inc. Under these standard CO_2 atmospheres, the EMF was measured in the temperature range of 300-600 °C with a electrometer (Adventest TR8652).

3. Results and discussion

The KSmSi₂O₆ ceramic disc formed after sintering was analyzed using scanning electron microscopy. The scanning electron microscopy images of (a) the fracture surface of the KSmSi₂O₆ ceramic sintered at 1050 °C and (b) the surface

Figure 2: Arrhenius plot of log σ T vs. 1/T for KSmSi₂O₆ ceramic and the scanning electron microscopy images present in insets

Note: (a) the fracture surface of KSmSi₂O₆ ceramic and (b) the surface of Pt electrode.

of the Pt electrode are shown in the inset of Figure 2. It is clear from the image that the sintering of $KSmSi_2O_6$ ceramic progressed well, although some pores were observed. The Pt electrode exhibited uniform porosity over the surface. Further, the conductivity component (bulk and grain boundary components) of the $KSmSi_2O_6$ ceramic was determined by performing complex-plane impedance analysis. The obtained conductivity components were parameterized based on the Arrhenius equation (Figure 2).

The dependence of EMF on the CO₂ partial pressure for the two types of CO₂ gas sensors at 450 °C is shown in Figure 3. The standard gases were passed through the sensing electrode side at the flow rate of 50 $\text{cm}^3 \cdot \text{min}^{-1}$. It was observed that the EMF of each sensor increased linearly with increasing $\log Pco_2$, and the dependence of the EMF on $\log Pco_2$ obeys Nernst's equation. Meanwhile, the potential at the counter electrode, which is shielded from the detected CO₂ gas and exposed to an air atmosphere, was almost constant at a given temperature. This indicated that the observed EMF change was due to the potential change at the sensing electrode. Hence, the electron transfer number at the sensing electrode was estimated to be 2, calculated from the slope obtained from the linear regression analysis. This suggested that the CO₂ gas sensing in both types of sensors is based on a twoelectron transfer reaction.

Figure 3: Dependence of sensor EMF on $\rm CO_2$ partial pressure in air at 450 °C

Notes: Heterojunction-type sensor: Pt | KSmSi₂O₆ | Pt, Li₂CO₃, Homojunction-type sensor: Pt | KSmSi₂O₆ | Pt, K₂CO₃.

Further, the dependence of EMF on O_2 partial pressure (log Po_2) under 1×10^{-3} atm-CO₂ are shown in Figure 4. The EMF increases linearly with increasing log Po_2 and similar to the case of CO₂, the dependence of EMF on log Po_2 obeys Nernst's equation. The electron transfer number estimated from the experimental slope is approximately 4, indicating

Figure 4: Dependence of sensor EMF on O_2 partial pressure in 1×10^{-3} atm-CO_2 pressure at 450 $^\circ C$

that the four-electron reaction of $\rm O_2$ is the method of detection at 450 °C.

Figure 5 shows the temperature dependence of EMF at 1 \times 10⁻³ atm-CO₂ pressure. The EMF values decreased linearly with increasing temperature in the range of 350-550 °C. Furthermore, the temperature dependence of the potential at the detection electrode is linear in the range of 350-550 °C, indicating that the same electrode reaction occurs at the detection electrode in this range. Hence, the temperature dependence of the potential at the counter electrode is also expected to be linear.

Figure 5: Temperature dependence of sensor EMF at 1×10^{-3} atm-CO₂ pressure in air

For approximately 1 month, the temperature was increased from room temperature to 450 °C every measurement day, and the EMF was measured to confirm the change in the sensor response over time. In the heterojunction-type sensor, EMF increased by approximately 0.05 V until approximately 5 days, and then stabilized thereafter. In contrast, in the homojunction-type sensor, EMF decreased by approximately 0.03 V until approximately 5 days, and then stabilized thereafter. The tendency of the homojunction-type sensor was the same as that of the previously reported Pt | KSmSi₃O₈ | Au, K₂CO₃ sensor (Nakayama et al., 1997). In addition, it has been reported that the EMF and sensitivity of commercially available Nasicon electrolyte-based sensors are stable for a long period of 2 years (Kaneyasu et al., 1998).

Figure 6 shows the EMF response curves of the hetero- and homojunction-type sensors when the CO₂ gas concentration was changed in three steps from 1×10^{-4} to 1×10^{-1} atm. In the heterojunction-type sensor, the 90 % response times for an increase and decrease in CO₂ concentration were approximately 2 and 3 min, respectively. Meanwhile, in the homojunction-type sensor, the corresponding 90 % response times were approximately 5 and 10 min, respectively. Thus, the responses of both types of sensors were rapid, especially in the heterojunction-type sensors, and the reproducibility of the sensor EMF was also satisfactory. From these results, it can be assumed that the electrode reactions on the sensing electrode of both types of sensors are different, although twoelectron reduction takes place. We assumed the following model for the solid electrolyte (KSmSi₂O₆ ceramic)/sensing electrode interface grain boundaries of the solid electrolyte, which are invaded by carbonate as a sensing electrode mate-

Figure 6: Response curves of sensor EMF in air at 450 °C

rial; the carbonate layer is very thin. It is considered that the carbonate present around the grain boundaries of the solid electrolyte is in redox equilibrium with the CO_2 gas captured on the sensing electrode, i.e., the solid electrolyte acts as a salt-bridge or supporting electrolyte. A schematic of the potential gradient at the interface between the solid electrolyte and sensing electrode is shown in Figure 7. E_1 and E_2 are the potentials corresponding to the change in the CO_2 gas concentration in the measurement atmosphere. The heterojunction-type sensor faces restricted ion diffusion and the layer of potential gradient is relatively narrow; meanwhile, in

Figure 7: Schematic of the potential gradient at electrolyte/electrode interface

the homojunction-type sensor, ion diffusion is not restricted and the potential gradient occurs from the inside of the solid electrolyte. This is indicative of faster EMF response in the heterojunction-type sensor.

Considering the above results, the response mechanism of the CO_2 gas sensing was investigated. The counter electrodes of both types of sensors were always exposed to an atmosphere of 2.1×10-1 atm oxygen partial pressure, and the electrode reaction can be expressed by the following equation:

$$2K^{+} + 1/2O_{2} + 2e^{-} = K_{2}O$$
 (1)

The following reactions occur at the sensing electrode: in a heterojunction-type sensor,

$$2Li^{+} + CO_2 + 1/2O_2 + 2e^{-} = Li_2CO_3$$

In a homojunction-type sensor,

 $2K^{+} + CO_2 + 1/2O_2 + 2e^{-} = K_2CO_3$

Here, these two reactions are represented by the following equation.

$$2M^{+} + CO_{2} + 1/2O_{2} + 2e^{-} = M_{2}CO_{3} (M = Li, K)$$
(2)

When Nernst's equation is applied to equations (1) and (2), the potential of the counter electrode, E_{cr} and the sensing electrode, E_{sr} are expressed by equations (3) and (4), respectively:

$$E_{c} = E_{c}' - (RT/2F) \ln(a_{K2O} / a_{K^{+}}^{2} \cdot (Po_{2}^{-1})^{1/2})$$
(3)

$$E_{s} = E_{s}' - (RT/2F) \ln(a_{M2CO3} / a_{M^{+}}^{2} \cdot (PO_{2}^{\parallel})^{1/2} \cdot PCO_{2})$$
(4)

where *E*', *R*, *T*, *F*, a_{K2O} , a_{K^+} , a_{M2CO3} , a_{M^+} , Po_2 , and Pco_2 are the standard electrode potential, gas constant, absolute temperature, Faraday constant, activities of K₂O, K⁺, M₂CO₃, and M⁺, and the partial pressures of O₂ and CO₂, respectively. As the E_c' and E_s' are constants, the EMF abbreviated as E is expressed as follows:

$$E = E_s - E_c$$

= E' - (RT/2F) ln(a_{M2CO3} · a_{K+}² · (Po₂^h)^{1/2} / a_{K2O} · a_{M+}² · Pco₂ · (Po₂^h)^{1/2}) (5)

where *E*' is a constant. When the activities of M_2CO_3 , M_2O , Li⁺, K^+ , PO_2^- , and PO_2^- are kept constant, the CO₂ concentration can be calculated from the electromotive force *E*. Certainly, the results of the present CO₂ gas sensing can be reasonably explained by equation (5).

The ranges of electromotive force and operating temperature of the sensor reported in this study are almost the same as those of commercially available Nasicon electrolyte-based sensors and other reported sensors. Therefore, it is considered that the same CO_2 detection circuit can be used.

4. Conclusion

Two types of solid-state potentiometric CO_2 gas sensors consisting of a potassium ionic conductor, $KSmSi_2O_6$ ceramic as a solid electrolyte, and metal carbonates (Li_2CO_3 for heterojunction-type sensors and K_2CO_3 for homojunction-type sensors) as a sensing electrode, were designed and their sensing properties were compared.

- The EMFs obeyed Nernst's equation for both hetero- and homojunction-type sensors.
- A two-electron transfer reaction associated with carbon dioxide molecules occurs on the sensing electrode. The carbonates Li₂CO₃ and K₂CO₃ used as sensing electrodes remain in redox equilibrium with the detected CO₂ gas.
- The 90 % EMF response times of both the hetero- and homojunction-type sensors was rapid; however, it was more pronounced in the former.

Acknowledgement

We would like to thank Editage (www.editage.com) for English language editing.

References

- Aung, Y. L., Nakayama, S., and Sakamoto, M. (2005). Electrical properties of MREGeO₄ (M=Li, Na, K; RE=rare earth) ceramics. *Journal of Materials Science*, Vol. 40, 129-133.
- Ikeda, S., Kondo, T., Kato, S., Ito, K., Nomura K., and Fujita, Y. (1995). Carbon dioxide sensor using solid electrolytes with zirconium phosphate framework (2). Properties of the CO₂ gas sensor using Mg_{1.15}Zr₄P_{5.7}Si_{0.3}O₂₄ as electrolyte. *Solid State lonics*, Vol. 79, 354-357.
- Kaneyasu, K., Otsuka, K., Setoguchi, Y., Nakahara, T, Sonoda, S., and Aso, I. (1998). A carbon dioxide gas sensor based on solid electrolyte for air quality control. *IEEJ Transactions on Electrical and Electronic Engineering*, Vol. 118-E, No. 2, 199-127. (in Japanese)
- Nakayama, S. and Sadaoka, Y. (1995). Morphology and Ionic Conductivity of Potassium-Samarium-Silicates, K₂O-Sm₂O₃nSiO₂ (n=1-14). *Electrochimica Acta*, Vol. 40, 2541-2546.
- Nakayama, S., Kuwata, S., Sato, M., Sakamoto, M., and Sadaoka, Y. (1997). CO₂ gas sensor using the potassium ionic conductor K₂O-Sm₂O₃-6SiO₂. *Journal of the Ceramic Society of Japan*, Vol. 105, 255-257.
- Nakayama, S., Kuwata, S., Ichimori, T., Okazaki, M., Okamasa, M., Imai, S., Sakamoto, M., and Sadaoka, Y. (1998). Ionic conductivity of MAISi₂O₆ (M = Li, Na, K, Rb and Cs) and its application as a potentiometric CO₂ gas sensor. *Journal of the Ceramic Society of Japan*, Vol. 106, 715-718.

- Pasierb, P., Komornicki, S., Gajerski, R., Kozinski, S., and Rekas, M. (2003). The performance and long-time stability of potentiometric CO₂ gas sensors based on the (Li-Ba) CO₃|NASICON|(Na-Ti-O) electrochemical cells. *Solid State lonics*, Vol. 157, 357-363.
- Pasierb, P., Komornicki, S., Kozinski, S. Gajerski, R., and Rekas, M. (2004). Long-term stability of potentiometric CO₂ sensors based on Nasicon as a solid electrolyte. *Sensors and Actuators B: Chemical*, Vol. 101, 47-56.
- Shqau, K., Nafe, H., Aldinger, F., and Figueiredo, F. M. (2004). Determination of the p-electronic conduction parameter of NASICON by potentiometric measurements. *Electrochimica Acta*, Vol. 49, 2691-2696.
- Yamamoto, A., Shinkai, T., Loy, A. C. M., Mohamed, M., Baldovino, F. H. B., Yusup, S., Quitain, A. T., and Kida, T. (2020). Application of a solid electrolyte CO₂ sensor to the performance evaluation of CO₂ capture materials. *Sensors and Actuators B: Chemical*, Vo.315, 128105.
- Zhu, Z., Thangadurai, V., and Weppner, W. (2013). Garnet-like solid state electrolyte Li₆BaLa₂Ta₂O₁₂ based potentiometric CO₂ gas sensor. *Sensors and Actuators B: Chemical*, Vol. 176, 284-289.

(Received: March 24, 2022; Accepted: April 6, 2022)