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Abstract
An area means a kind of largeness of a shape on planes and curved surfaces. It is used when the largeness of a land or an of-
fice space are derived as a familiar case. There is a wide range of applications. For example, various kinds of physical quantities, 
population and number of votes are predicted using area density and there are many methods to derive the area largeness. 
Simple formulas are used to derive the area of a circle or square, and these are learned in elementary and junior high schools. 
Also, when finding the area of land, Heron’s formula is used by laying out some triangles. Furthermore, there is a method to 
obtain it by the definite integral. However, the definite integral cannot be used when a formula of the indefinite integral for the 
shape is not understood. Namely, it is not suitable in the case of complex function. On the other hand, the Monte-Carlo method 
and trapezoidal rule are well known as methods of computer processing at deriving approximate area. The performance com-
parison of area approximation by the Monte-Carlo method and trapezoidal rule is performed in this study, in which both simple 
and complex shapes are processed. Optimal number of iteration and divide number are implemented to introduce a target 
accuracy, when using the Monte-Carlo method and trapezoidal rule. Moreover, the iteration number n1 in the Monte-Carlo 
method and the divided number n2 in trapezoidal rule are derived and the CPU times for both of the methods are introduced in 
the same precision.
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1.  Introduction
There are many cases to derive the area largeness in our 

daily life, for example deriving a paving area. In that case, 
the land is divided into several triangles and the largeness of 
each triangle is derived using Heron’s formula (Cayley-Menger 
Determinant, 2018). The derived total area is the desired 
largeness.

When the object is a simple shape, the area is derived eas-
ily using a simple formula which is learned in elementary and 
junior high schools. In addition, the definite integral method 
is used to derive the area largeness (Bourbaki, 2004). An inter-
val of a function (i.e. exponentiation and trigonometric func-
tion) is divided into several parts in the method and the area 
is derived. The following process is carried out in the definite 
integral method, namely the start and end points of integral 
interval are substituted into the indefinite integral formula, 
and the difference is derived. The difference is the definite in-
tegral value. Although there is a myriad of indefinite integral 
functions for f(x), the function can be identified in the definite 
integral formula. It can be seen by the definite integral when 
adding a constant C of integration in the indefinite integral. 
The integral constants are canceled by the subtraction and 

the result of the integral becomes irrelevant to the constant 
C. Therefore, the definite integral value is determined if the 
function f(x) to be integrated and the integral interval i ≤ x ≤ j 
is determined. However, this process cannot be utilized when 
the formula of the indefinite integral is not understood. Al-
though the definite integral method can be calculated quick-
ly, it cannot be utilized for a complex function because the 
formula is not understood. The Monte-Carlo method (Mot-
wani and Raghavan, 1995; Sugihara and Murota, 2003; Suzuki 
and Goda, 2020) and trapezoidal rule (Richard and Douglas, 
2000) are generally utilized when using a computer. The defi-
nite integral is performed using uniform random numbers in 
the method and the approximate value of the definite inte-
gral is derived by calculating the area sum of trapezoids. This 
is one of the approximate calculations and it is not obvious 
how many divisions and iterations to make according to the 
required accuracy. Generally, the numbers of divisions and it-
erations have to be increased to improve accuracy when the 
shape of the calculating area becomes complex. This study is 
conducted to obtain a measure of calculation accuracy using 
the Monte-Carlo method and trapezoidal rule for target areas 
which are simple and complex shapes. Moreover, the Monte-
Carlo method at the iteration number n1 and trapezoidal rule 
at the divided number n2 are carried out and the areas are 
derived and the CPU times for both methods are introduced 
for the same precision.
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Furthermore, the target area is the definite integral 
S = ∫a

b f(x)dx in this paper. It is more common using triangles in 
the case of finding the area of various shapes. However, in the 
case of the definite integral, trapezoidal rule is used because 
the shape of the area to be found is easily approximated by a 
trapezoid. When using triangles, the area to be found must be 
covered by the set of triangles and the area of each triangle 
must be found. This is possible if each trapezoid generated 
by equally dividing the time axis is divided into two triangles. 
This is exactly trapezoidal rule.

2.  How to calculate an approximation area by Monte-Carlo 
method

It is called a random number when there is not a causal 
relationship before and after each number. There are prob-
ability distribution random numbers such as uniform distri-
bution random numbers, normal distribution random num-
bers, exponential distribution random numbers, and Poisson 
distribution random numbers in random numbers. It is de-
termined which random number is used by the appearance 
probability of each number. Among them, when using the 
uniformly distributed random numbers, which are particularly 
important, each number appears independently with equal 
probability. Namely, there is not a causal relationship before 
and after each number, but if a frequency for each number is 
taken, it is possible to understand that each number appears 
at the same times. The Monte-Carlo method is a general term 
for simulations using these probability distribution random 
numbers and all problems including a probabilistic factor is 
subject to the Monte-Carlo method. In this paper, we deal 
with a method to approximate S = ∫a

b f(x)dx using the Monte-
Carlo method. The value of S is the shaded area in Figure 1. As 
shown in Figure 2, the area V of the smallest square that in-
cludes the shaded area completely is derived. Next, n dots are 
randomly sprinkled in this square using the uniform random 
number. In short, x coordinate xt and y coordinate yt for dots 
vt is set each established as below.

xt = (b – a) · extended rand() + a
yt = c · extended rand()

The uniform random number usually uses the rand(1) but 
the accuracy is not so good. Therefore, we use the extended 
rand() in this paper. The other, Mersenne twister and Xorshift 
is used for other uniform random numbers. The extended 
rand() is a uniform random number as follows. The extended 
rand() uses a built-in function of C language. By dividing 
rand()+0.5 by RAND_MAX+1, it will be evenly distributed with-
out being biased toward both ends. However, since the value 
of RAND_MAX is relatively small depending on the processing 
system, a uniform random number is calculated using mul-
tiple values of the rand() function as follows.

double rand(){
double m, a;
m=RAND_MAX+1;
a=(rand()+0.5)/m;
a=(rand()+a)/m;
return (rand()+a)/m;
}

Count the number of dots that are in shaded area within Figure 1: Mean of S = ∫a
b f(x)dx
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Figure 2: Approximate solution of S = ∫a
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n pieces dots sprinkled in square, then calculate the S using 
V : S = n : k which is the nature of a random number. Here, the 
necessary and sufficient condition for the dot vt entering in 
the shaded area is,

f(xt)  yt

This is shown in Figure 3.

And, the flowchart to solve the approximate solution of 
S = ∫a

b f(x)dx by the Monte-Carlo method is shown in Figure 
4.

3.  How to calculate an approximation area with trapezoi-
dal rule

Trapezoidal rule divides the shape of the target definite 
integral (the find area) into multiple trapezoids, and it is a 
method of approximately calculating the definite integral by 
summing the area of each trapezoid. For example, the area 
S of the shape which is sandwiched between the curve y = 
f(x) shown in Figure 1 and the specified range [a, b] on the x-
axis, equally n-decompose between a and b, find the coordi-
nates of intersection of x = xi and y = f(x) from the xi of x-axis 
at that time, if the adjacent intersection is connected with a 
straight line, and it is understood that the area S is approxi-
mately found as the summation of n-pieces trapezoids. Also, 
if the value of n is larger, the accuracy of approximation is 
improved. Figure 5 shows the shape in a case with the range 
[a, b] divided into 3. In this case, the approximation of S is S1 + 
S2 + S3. The flowchart using trapezoidal rule which derives the 
area S of the figure sandwiched between the curve y = f(x) 
and the x-axis is shown in Figure 6.Figure 3: Necessary and sufficient condition for the dot vt en-

tering in shaded area (f(xt)  yt)

xt x

y

f(xt)

yt vt

y  = f (x )

Figure 4: Flowchart to solve the approximate solution of S = ∫a
b 

f(x)dx by Monte-Carlo method
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Figure 6: Flowchart which derives the area S = ∫a
b f(x)dx using 

trapezoidal rule
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4.  Performance comparison of both methods
In this section, the performance comparison of the Monte-

Carlo method and trapezoidal rule for approximate area is 
performed by experiments. The shape of the target area is ∫1

3 
x2dx as a simple one, and ∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx as a 
complicated one. Both diagrams are shown in Figure 7 and 
Figure 8, respectively. When using the Monte-Carlo method, 
the area of the square where the dots are sprinkled is the 
same for both a simple one and a complicated one. In this 
case both are 18. The accuracy of experimental values in this 
paper is defined by the following equation.

Accuracy (%) = (Theory – |Experiment – Theory|) * 100 / Theory

4.1  Experiment 1
For ∫1

3 x2dx, the iteration number n1 is closest to 70 %, 75 
%, 80 %, 85 %, 90 %, 95 % accuracy using the Monte-Carlo 
method, respectively. However, the upper limit (c) of the y-
coordinate will be 9.

4.1.1  Result
Table1 shows the result. However, “average accuracy of 100 

times” is the average accuracy when 100 simulations with the 
stated iteration number are performed.

4.2  Experiment 2
For ∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx, the iteration number n1 is 
closest to 70 %, 75 %, 80 %, 85 %, 90 %, 95 % accuracy using 
the Monte-Carlo method, respectively. However, the upper 
limit (c) of the y-coordinate will be 6.

4.2.1  Result
The result is shown in Table 2.

4.3  Experiment 3
For ∫1

3 x2dx, using trapezoidal rule is respectively the divided 
number n2 closest to accuracy 70 %, 75 %, 80 %, 85 %, 90 % 
and 95 %. However, if there is no corresponding accuracy, it 
will be omitted.

4.3.1  Result
The result is shown in Table 3. The accuracy of the approxi-

mate area is already high from the stage where the divided 
number is 1, reaching about 85 %. Also, when the divided 
number becomes 2, the accuracy of approximate area is over 
95 %. The accuracy of the approximate area for the divided 
number is shown in Table 4. And, Figure 9 shows the graph of 
Table 4.

4.4  Experiment 4
For ∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx, using trapezoidal rule 
respectively the divided number n2 is closest to accuracy 70 %, 
75 %, 80 %, 85 %, 90 % and 95 %. However, if there is no cor-
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Figure 7: Shape of ∫1
3 x2dx
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Figure 8: Shape of ∫0
3 {x (x – 1)(x – 2)(x – 3) + 2} dx

Table 1: Iteration number for accuracy when finding ∫1
3 x2dx 

using Monte-Carlo method

Accuracy
(%)

Iteration number
(n1)

Average accuracy of
100 times (%)

70 8 70.230

75 11 75.979

80 18 80.115

85 30 84.408

90 80 90.552

95 250 94.884

Table 2: I teration number for accuracy when finding 
∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx using Monte-Carlo method

Accuracy
(%)

Iteration number
(n1)

Average accuracy of
100 times (%)

70 21 69.025

75 25 75.247

80 38 79.783

85 85 85.460

90 120 89.353

95 550 94.308
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responding accuracy, it will be omitted.

4.4.1  Result
The result is shown in Table 5. Also, the accuracy of the ap-

proximate area for the divided number is shown in Table 6. 
And, Figure 10 shows the graph of Table 6.

4.5  Experiment 5
For ∫1

3 x2dx, the accuracy of trapezoidal rule divided number 
n2 closest to accuracy of the Monte-Carlo method of the it-
eration number n1 is derived. However, derive n1 as 100, 1000 
and 10000. Also, when using the Monte-Carlo method, the 

upper limit value (c) of y coordinate is set to 9.

4.5.1  Result
The result is shown in Table 7.

4.6  Experiment 6
For ∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx, the accuracy of trap-
ezoidal rule divided number n2 closest to the accuracy of the 

Table 3: Divided number for accuracy when finding ∫1
3 x2dx, 

using trapezoidal rule

Accuracy
(%)

Divided number
(n2)

Accuracy of
approximate area (%)

70

75

80

85 1 84.615

90

95 2 96.154

Table 4: Accuracy of approximate area for the divided number 
of Experiment 3

Divided number
(n2)

Accuracy of approximate
(%)

1 84.615

2 96.154

3 98.291

4 99.038

5 99.385

6 99.573

7 99.686

30 99.983

Figure 9: Graph of divided number and accuracy from Table 4
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Table 5: Divided number for accuracy when finding 
∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx using trapezoidal rule

Accuracy
(%)

Divided number
(n2)

Accuracy of
approximate area (%)

70 2 65.809

75

80 1, 3 82.353

85

90 4 89.591

95 6 95.221

Table 6: Accuracy of approximate area for the divided number 
of Experiment 4

Divided number
(n2)

Accuracy of
approximate (%)

1 82.353

2 65.809

3 82.353

4 89.591

5 93.195

6 95.221

7 96.465

24 99.694

30 99.804

Figure 10: Graph of divided number and accuracy from Table 
6
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Monte-Carlo method of the iteration number n1 is derived. 
However, derive n1 as 100, 1000 and 10000. Also, when using 
the Monte-Carlo method, the upper limit value (c) of y coor-
dinate is set to 6.

4.6.1  Result
The result is shown in Table 8.

4.7  Experiment 7
For ∫1

3 x2dx, when the accuracy between the Monte-Carlo 
method and trapezoidal rule is the closest, derive both of the 
CPU time. However, the accuracy of basis is set to 70 %, 75 %, 
80 %, 85 %, 90 %, 95 % but if there is no corresponding accu-
racy in both approximation area of accuracy, the CPU time is 
omitted. Also, when using the Monte-Carlo method, the up-
per limit value (c) of y coordinate is set to 9. The experiment 
used a personal computer, LIFEBOOK SH75/C3, FMVS75DUV1 
by Fujitsu.

4.7.1  Result
The result is shown in Table 9. However, the CPU time (s) of 

the Monte-Carlo method is taken by an average value from 
100 times experiments because of using a random number.

4.8  Experiment 8
For ∫0

3 {x (x – 1)(x – 2)(x – 3) + 2} dx, when the accuracy be-
tween the Monte Carlo method and trapezoidal rule is the 
closest, derive both of the CPU time. However, the accuracy 
of basis is set to 70 %, 75 %, 80 %, 85 %, 90 %, 95 % but if 
there is no corresponding accuracy in both approximation 
area of accuracy, the CPU time is omitted. Also, when using 
the Monte-Carlo method, the upper limit value (c) of y coor-
dinate is set to 6. The experiment used a personal computer, 
LIFEBOOK SH75/C3, FMVS75DUV1 by Fujitsu.

4.8.1  Result
The result is shown in Table 10. However, the CPU time (s) 

Table 7: For ∫1
3 x2dx, the accuracy of trapezoidal rule divided 

number n2 closest to the accuracy of the Monte-Carlo meth-
od of the iteration number n1

n1

Accuracy of
Monte-Carlo method

(%)
n2

Accuracy of
trapezoidal rule

(%)

100 91.832 2 96.154

1000 97.707 3 98.291

10000 99.066 4 99.038

Table 8: For ∫0
3 {x (x – 1)(x – 2)(x – 3) + 2} dx, the accuracy of 

trapezoidal rule divided number n2 closest to the accuracy of 
the Monte-Carlo method of the iteration number n1

n1

Accuracy of
Monte-Carlo method

(%)
n2

Accuracy of
trapezoidal rule

(%)

100 86.600 4 89.591

1000 95.973 7 96.465

10000 98.827 12 98.781

Table 9: For ∫1
3 x2dx, the CPU time when the accuracy between the Monte-Carlo method and trapezoidal rule is the closest

Accuracy of
Monte-Carlo method (%)

n1 CPU time (s)
Accuracy of

trapezoidal rule (%)
n2 CPU time (s)

69.423 8

75.077 11

80.692 18

85.777 30 0.594 84.614 1 under 0.001

90.939 80

94.904 250 0.640 96.153 2 under 0.001

Table 10: For ∫0
3 {x (x – 1)(x – 2)(x – 3) + 2} dx, the CPU time when the accuracy between the Monte-Carlo method 

and trapezoidal rule is the closest

Accuracy of
Monte-Carlo method (%)

n1 CPU time (s)
Accuracy of

trapezoidal rule (%)
n2 CPU time (s)

69.714 21

74.541 25

80.947 38 0.609 82.353 1, 3 Under 0.001

84.415 85

89.676 120 0.656 89.591 4 0.016

94.712 550
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of the Monte-Carlo method is taken by an average value from 
100 times experiments because of using a random number.

5.  Conclusion
As an overall evaluation, the efficiency of trapezoidal rule 

was higher than the efficiency of the Monte-Carlo method. 
However, we realized that there were faults. The following is 
a comparison of both methods from the evaluation of each 
experiment.

In Experiment 1, if a required area was a simple shape, in 
order to output about 70 % accuracy by the Monte-Carlo 
method, it was necessary for the iteration number of about 
10 times. And, in order to output over 95 % accuracy, the 
iteration number became suddenly big and it was necessary 
for over 250 times.

In Experiment 2, because the required area was a complex 
shape, the iteration number that was necessary increased. 
In order to output about 70 % accuracy by the Monte-Carlo 
method, it was necessary for the iteration number of over 20 
times. And, in order to output over 95 % accuracy, it became 
suddenly big and it was necessary for the iteration number of 
over 550 times.

In Experiment 3, from the step of the divided number 1, 
already the accuracy of approximation area increased to near 
85 %. In the divided number 2, the accuracy of approximation 
area went over 95 %. Then, as the divided number increased, 
a log curve was drawn and converged to 100 %.

The divided number of Experiment 4 was necessary more 
than Experiment 3, but the accuracy of the divided number 2 
decreased more than the divided number 1 in Experiment 4, 
as the divided number increased to 3, 4, 5, etc., the accuracy 
increased while drawing a log curve and converged to 100 %. 
The phenomenon in which the accuracy does not improve 
even if the number of the divided number increases is that 
the shape of the area is an electrocardiogram with a large 
number of cycles, a sound waveform, a vibration waveform, 
a sawtooth waveform, and a function such as a comb and it 
happens when the difference in height is big. Trapezoidal rule 
is prone to error for such an area of shape, so this can be said 
to be a fault.

In Experiment 5 and 6, trapezoidal rule achieves higher ac-
curacy with a smaller divided number, but the Monte-Carlo 
method requires an order of magnitude with more iterations 
to achieve the same accuracy. Also, in order to realize the 
improvement obtained by increasing the divided number by 
1 in the Monte-Carlo method, it was necessary to increase 
the iteration number tenfold. Furthermore, as the function 
governing the outline of the target area became more com-
plex, the divided number was required to maintain the same 
accuracy increased rapidly. Trapezoidal rule has faults as men-
tioned above, although the Monte-Carlo method has flexibili-
ties and it can be used for any area of shape.

From Experiment 7 and 8, it can be judged that the ef-
ficiency of trapezoidal rule is overwhelmingly higher about 
CPU time. However, this was previously mentioned. It is pre-
dictable that even if the divided number is increased, the re-
sult as expected may not be produced when the area of the 
shape is an electrocardiogram with a large number of cycles, 
a sound waveform, a vibration waveform, a sawtooth wave-
form, a function such as a comb, and the height difference is 
big. This is the weak case for trapezoidal rule.
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