
5科学・技術研究　第 14 巻 1 号　2025 年Union Press

1. Introduction
Societies and individual lives are surrounded by new digital

and machine learning-AI environments. Many issues have
been raised and discussed regarding the fairness, equity, ex-
plainability, transparency, and other digital ethics of these new
digital and machine learning-AI environments. Practical solu-
tions to these issues facing society will be important. On the
one hand, there is a strong need for “basic research” involving
understanding of various fundamental notions of digital eth-
ics. On the other hand, it should be noted that some of the
ethical issues of the digital environment, such as explainability
of computational processes and fairness of information pre-
sentation have already been apparent with the emergence
of the software-network society in the late 20th century. We
believe that understanding the above basic notions that
emerged in the pre-machine learning environments (namely,
the software and communication network environments)
will be useful in examining current machine learning and big
data environments. As shown below, the information process-
ing environment is divided into A-level (the manual process
environment), B-level (the software and communication net-
work environment), and C-level (the machine learning and
big data environment). We will focus on such perspectives. Of
course, there is a view that the C-level environment is a new
environment that has never existed before, and that the issues
of digital ethics that have emerged in this environment are a
completely new set of issues. However, even if we take, for ex-
ample, the fairness of the digital environment as an example, it
is not only a problem specific to data science or AI models, but
it also has a certain continuity with the Civil Rights Movement
of the 20th century and related to traditional philosophical,
ethical, and legal discussions. Clearly, the role of contemporary
digital science and technology is central when addressing a
set of contemporary issues in the digital environment at the
C-level, but at the same time, fundamental understandings of
the issues and debates inherited from the humanities and so-
cial sciences must also be fully taken into account. This article
attempts to rethink the issue of “explainability in the digital
environment,” which has potentially already emerged in the

B-level software and the communication network environ-
ment, from the perspective of logic, which has aspects of both
the humanities and the mathematical sciences. This article is
compiled based on the authorʼs presentations at three recent
French-Japanese international conferences, Explainability
and Fairness in Digital Environments (March 27, 2025, Keio
University), Towards the Fair Developments of Digital Environ-
ments, including OA and OS (March 24, 2025, Keio University),
Education and AI (March 23, 2025, Keio University), and on
the authorʼs keynote talk at the CIPSH (International Council
of Philosophy and Human Sciences) 75th Anniversary Confer-
ence, Beijing, September, 23, 2024.

2. Background
In this section, we discuss the explainability of software pro-

grams from the perspective of logic. The readers are reminded
that logic has a humanities (and social sciences) aspect as well
as a mathematical, scientific, and technical aspect. We aim to
provide an example of cooperation between the humanities
and scientific/technical perspectives. For example, issues of
fairness, explainability, and transparency in the broad sense of
digital ethics are not unique to current AI and big data envi-
ronments. They include many issues that appeared in manual-
based information processing environments even before the
software and communication network environments entered
society and individual lives. The author proceeds the discus-
sion in this article with the following assumptions about the
epochal changes in information processing in society.

Since the late 2010s, AI ethics and guidelines have been is-
sued at the regional level (e.g., EUʼs Ethics guidelines for trust-
worthy AI, 2019) and at the level of AI-related societies, and it
was particularly significant that in November 2021, UNESCO
announced the Recommendation on the Ethics of Artificial
Intelligence at the global level. It is important to note here
that the November 2019 UNESCO World Logic Day was estab-
lished (1) and the Proclamation Statement of UNESCO Director-
General, Audrey Azoulay, on the establishment of a World
Logic Day, made it clear that UNESCO World Logic Day is a
day to recognize and celebrate the contributions of logic, but

特 集

On explainability in digital computing environments:
From the view of logical verification and proof assistants

Mitsuhiro Okada　Keio University

6 Studies in Science and Technology, Volume 14, Number 1, 2025

that this contribution of logic to humanity rightly includes the
development of computers and AI as well as sciences, along
with the humanʼs ability of logical thinking, and the statement
mentioned the guidelines for human-centralized AI was in
course of preparation. Namely, in establishing this UNESCO
World Logic Day, UNESCO has announced that it is preparing
guidelines on ethics for human-centered AI. The Recommen-
dation on the Ethics of Artificial Intelligence announced will
be published in November 2022. (2)

3. Formal verification of program correctness, proof assistant
systems and explainability with logical explanatory proofs
3.1 Preliminary

This section focuses on the issue of logically grasping the
explainability issue, as an issue at the B-level environment, and
an overview from a logical perspective of the extent to which
this attempt at explaining is successful.

With the B-level software environments, when the source
code is open, the programmers could detect how a result of a
program execution came with the code. The programmer may
be able to explain how the result came up to non-program-
mers, or to ordinary people. This is of course the case when a
program is rather simple. If the program is small enough, the
whole procedure of the program could be drawn as a flow-
chart or diagram on paper, which are manual-like tools. Note
that an 8 set of manual(s) to instruct how to handle a proce-
dure is a typical tool in the A-level environments. But, when
one considers large-scale software, it is less easy to analyze
programs involved, to explain, for example, how and why this
or that result came up. For example, a software of a large scale

nation-wide banking system or stock market system comes
up with an alert (of system error) to shut down the nationwide
system. The expert software engineer team often needs hours
or days to try to detect it. Although this may be considered a
rather rare case, one cannot always expect explanation of the
result of software execution to the software development ex-
perts. In general, code analyses are not easy to prepare an ex-
planation to the software users, especially when the purpose
and specification of the program-software are not targeted to
the explanations. Explanations of the execution results could
be provided by the program-software side to some extent
when the specification of the program-software is precisely
described. A loan applicant who received a denial can see all
the possible cases to reach a denial result by a precisely de-
scribed program specification; it means the applicantʼs case is
one of these denial cases. A specification could be completed,
and even if the expert can detect how the execution process
reached a denial with this case (which is not always easy),
expressing the process to reach the denial as an explanation
usually requires changing the procedural description of the
execution process of the usual programming language into an
explanation with declarative (natural) language.

The formal specification methodology is expected to be
ideal for making a specification of a program-software pre-
cisely. To detect a program execution process either statically
or dynamically, the logical formal verification method is prom-
ising. In particularly, we will refer to the type theoretic logical
verification method, in which a program is identified with a
logical (declarative) proof. We will also refer to the formal verifi-
cation method with Hoare logic (and dynamic logic), in which
the logical (declarative) state descriptions are assigned in any
progress of a program from an initial state to the state when
the program terminates.

3.2 Formal verification for program correctness and explain-
ability

When examining the explanatory nature of program soft-
ware in a B-level environment, the first thing to realize is that if
a logical environment is added, optimistic predictions can be
made from the standpoint of various theories of “formal verifi-
cation methods” of program correctness.

One logical way is to use the Curry-Howard isomorphism
theorem, in which a program in a typed functional program-
ming language or its extension to a type theory has a logical
correspondence with a formal logical proof (cord). For ordinary
procedural program languages, we can mention an alternative
logical way, namely, Hoare logic and its extension, dynamic
logic.

• Facts about logical program verification theory:
The Curry-Howard isomorphism can identify a logical proof
and a typed functional program, while Hoare logic (and dy-

Figure 1: 3-level epochal changes of information processing
environments

A-level

Pre-Software-Net:
Human-manual Information Processing Level

B-level

Software Society:
Software and Information Communication Network Society Level

C-level

New Digital Environmental Society:
Big Data, Machine Learning̶AI Environmental Society

7科学・技術研究　第 14 巻 1号　2025 年

特集：On explainability in digital computing environments

namic logic) can describe a prodedural program as the logi-
cal states transision process.

• In addition, the same is true to a certain extent for:
The executable algebraic specification languages, and the
logic programming languages such as prolog.

The interpretation of Hoare logic proofs in terms of the
state-transitive relation between Hoare logic proofs and pro-
grams can be considered. (3) A more direct correspondence
between programs and proofs is found in the case of typed
functional languages.

First, let us mention the origin of the abstract programming
language untyped lambda calculus. J. McCarthy implemented
a symbolic computation processing language called lisp
based on untyped lambda calculus in the 1960s, which was
the worldʼs first AI language (AI here is first-generation sym-
bolic AI). He is also known for being the first to use the term
Artificial Intelligence.

Typed lambda calculus was given by Church-Kleene. The
correspondence between typed lambda calculus and logic is
as follows.

• Type: Logical formula
• Program (lambda term): Proof
• Program execution: Proof normalization (cut rule elimina-

tion)

This correspondence is called the Curry-Howard isomor-
phism theorem. Although the logic used for typed lambda
calculus was limited, Martin-Löf and others enriched it, which
is called type theory. Implementations of proof assistant and
verification tools based on type theory include Coq, Isabelle,
Agda, Hol, Lean and others.

We specifically refer to Coq (https://rocq-prover.org/). In this
subsection, we mainly consider the formal verification view
of programs. We will focus on proof constructions with these
proof assistant tools.

Assume that in a B-level environment where semi-automatic
judgment programs have been used for loan applications by
financial institutions, where judgments for loan applications
are made by programs based on type theory. When a logic-
proof analysis of loan review programs becomes possible, it
should be possible, at least theoretically, to provide a proof
for loan review decisions. This would seem to indicate that
explainability is at hand in the B-level environment, compared
to the difficulties with explanability currently faced by judges
based on deep learning and big data, in the C-level environ-
ment.

What is meant by explainability is the ability to explain
a decision on an on-demand basis when an explanation is
requested and needs to be provided. For example, suppose
a loan application is denied. In an A-level environment, a

financial institutionʼs examiner can testify as to how and at
what point in the process, he or she made the determination
of ineligibility in accordance with his or her manual provided
by the financial company. On the other hand, in a B-level en-
vironment, if a loan application is automatically reviewed by
type theoretic software and a loan application is determined
ineligible, the decision software can provide a logical proof
of ineligibility. The financial institution would be able to logi-
cally prove in court that the loan applicant is ineligible to be
granted the loan. However, what is the loan applicantʼs appeal
of the softwareʼs logical denial of the loan application? It may
not be an appeal against the argumentative rational-logical
decision-making process, but rather a disagreement with the
premises of the proof (i.e., the axioms and definitions assumed
in the proof). This point is discussed further elsewhere.

If one were to ask whether decisions were ever made in a
B-level environment solely by type-theoretic programs in the
screening of loan applications, the answer would be in the
negative. However, since 1990, a major Japanese money and
consumer loan institution launched a service called “MUJIN-
KUN,” in which a loan/credit card application and an auto-
matic response to the screening result could be obtained
almost immediately at an ATM with no human presence on
the financial company side, giving general consumers the
image of software automatic screening in Japan. In reality, it
is assumed that the applicantʼs information is located at the
financial institutionʼs credit card screening department via the
internet, and only semi-automatic software screening is con-
ducted. Therefore, it is not possible to provide proof of privacy
and security of the applicantʼs information to the “MUJIN-KUN”
screening pro-forma. However, for now, please consider this
as a thought experiment to see how explainability would be
theoretically possible if fully automated software screening
were conducted.

Type-theoretic languages have been implemented and
used in practice to verify whether a program is guaranteed
to compute to specification. This is to show whether or not
the type of a specification can be obtained through a series
of type inferences that compose the program. Verifying the
specification type through type inference means verifying
the correctness of the program, where the correctness of the
program usually includes the condition “if the execution of
the program terminates,” since program termination is guar-
anteed in a wide range of programming languages based on
type inference, this is a verification of the correctness of the
program, including the halting property of the program. Here,
the specification is given as a logical expression, which cor-
responds to a type. Verification that a given program is correct
according to the specifications corresponds to checking that
this program is a proof of the logical formula expressed by the
specification.

Now we focus more on proofs to ask to what extent a proof

8 Studies in Science and Technology, Volume 14, Number 1, 2025

is explanatory further and and what would be the issues on
explainabiliy of proofs in the context of proof assistant sys-
tems.

3.3 A gap between formal verification and explanatory
proofs

Even if software program verification corresponds in prin-
ciple to logical proof verification, proof by program verification
in reality is not always sufficiently explanatory.

Even if it can be verified through type inferences in a typed
language that a program is typed as specified, it is not known
whether the logic proof code formed in the process can be
viewed as an explanatory proof. A gap is expected to remain
in this regard. The specification is given in the form of a propo-
sition (logical formula), and program verification involves
verifying whether or not the program has this type. In other
words, it is to verify that the program corresponds to the proof
of the logical formula that represents this specification. As far
as program verification is concerned, the interest is in using
programs that are guaranteed to be correct, and not in inter-
preting programs as proofs. Type-theoretic verification systems
are often called proof assistant systems. They have the role of
assisting the user to construct proofs. However, if the main aim
is the program verification, attention will not be paid to the
proof interpretation itself.

Thematizing the proof itself, which is constructed along
with the logical form, and asking whether it is also explanatory
as a proof, was often a secondary issue in the framework of
20th century formal verification.

Let us look back at the fact that type theory tools are called
proof assistant systems and were originally designed to as-
sist proof construction. Proof assistant systems based on type
theory have as their primary purpose to construct proofs us-
ing formal logical reasoning steps interactively with a user.
They often also have partially automatic proof functions. The
formalization of mathematical proofs to verify the correct-
ness of proofs is a well-known major advantage of these type-
theoretic proof assistant systems. Here are just a few examples,
many of which constitute rigorous proofs consisting of reason-
ing steps formalized in a logical formal language.

The four-color problem conjecture, which asserts that any
map can be painted in four colors, was claimed to have been
solved affirmatively by the use of computers in the 1970s,
when computers became available. Later, in the 1990s, a more
compact 1482-case proof was given by computer due to im-
provements in some errors, and in the 1970s, confidence in
the correctness of the positive proof of the four-color problem
was relative to the large number of computer checks. In 2004,
Coq formalized the entire proof and verified its correctness in
formal logic. What this means is that a logically error-free for-
mal proof has been constructed with Coq. The proof code can
in principle be presented as a formal logical proof. However,

if one were to literally print or diplay the Coq code as a single
proof with Curry-Howard correspondence, the formaliza-
tion on Coq would also involve the translation of many non-
essential code parts into a proof. For the Coq type inference
system, the proof is error-free, but the whole proof of the four-
color theorem will not be understandable and graspable, and
the proof will not be perceived as explanatory.

3.4 A gap between formal logical proofs and explanatory
proofs

Based on the formalization practices of Coq and other ma-
jor type-theoretic proof assistant systems and mathematical
theories, we can say the following. Although it can produce
a proof code, the proof code itself cannot be regarded as an
overall explanatory proof. This is similar to the situation when
proof assistant systems are used for software verification.

The following is a list of the most common problems:

1. Generally speaking, even details that are not the main point
of the proof are translated into the proof.

2. As is true of formalized proofs in general, they are often
long, complex, and hard to survey.

3. Proof codes and proof expressions are difficult to read for
ordinary people who are familiar with reading proofs in a
natural language or in an ordinary logical and mathematical
language.

Regarding point 3, it is possible to resolve this by coordi-
nating the reasoning system of the C-level environment, as
typified by Large Language Models (LLMs), with the proof
assistant system of the B-level environment. It is important to
see that the gap described by 3 is the gap between the proof
assistantʼs proofs and the readable proofs in natural language
or in ordinary logical or mathematical language, which has
been situated at the A-level . Bridging the B-level and the C-
level via LLMs also means bridging with the A-level.

Regarding point 1, we can expect theoretical improvements
in the proof assistant system itself. On the other hand, it is
possible to construct a rigorous formal proof and at the same
time remove non-essential parts from type inferences. For ex-
ample, in Coq, an attempt was made to handle the equational
transformation part with a term rewriting proof system. Such
an example suggests that the type-reasoning proof paradigm
can be slimmed down by combining it with other proof calcu-
lation paradigms.

Regarding point 2, as an extension of the solutions to 1 and
3, we can believe that interactive coordination between proof
assistant systems and LLMs will offer possible improvements.
In the case of proof construction of known theorems, it will
depend on the ability of proof assistant systems and LLMs to
construct libraries of lemmas. In the case of known theorems,
both proof assistant systems and LLMs often have large can-

9科学・技術研究　第 14 巻 1号　2025 年

特集：On explainability in digital computing environments

didate lemma data. However, the issue that remains is the ex-
planatory nature of the proofs.

Dowek (4) holds that an explanatory proof should be an ex-
planation that reveals “reasons.” Dowek appears to suggest
that a proof of a proposition more general than the target
expected proposition may explain why the target proposi-
tion holds. It also appears that a proof that gives a generalized
property, and is a special case from it, has explanatory proper-
ties. For example, an explanatory proof of why 3 × 5 = 5 × 3
or 473 × 23 = 23 × 473 such as concrete numerical examples
of the exchange law of multiplication are valid by giving a
proof of the general proposition “For all a and b, a × b = b ×
a” for which these two equalities are special cases, The above
equation can be thought of as a proof of the general proposi-
tion “For all a and b, a × b = b × a.”

In such an explanation of 3 × 5 = 5 × 3, the proof of the
general exchange rule of multiplication may play the role of
“reason” and has a certain commonality with Dowekʼs idea. On
the other hand, for Wittgenstein, although he acknowledges
the proof structure of mathematical induction (“the unique-
ness rule” in his formulation), he rejects to state a × b = b × a
as the conclusion of a mathematical induction. For all a and b,
a × b = b × a is unnecessary to say in order to conclude 3 ×
5 = 5 × 3 or 473 × 23 = 23 × 473, according to Wittgenstein.
Thus, there is a disagreement. This article basically follows
Dowekʼs position; the Wittgensteinian explanation will be dis-
cussed at another time.

Let us return to the formalization and verification by Coq
of the proof of the four-color problem. Regarding the gap
between proofs generated by proof assistant systems and ex-
planatory proofs, we noted above that they could be closed.
However, even in the formalization by Coq of the four-color
problem proofs, there is still a 1482-case structure. From the
standpoint of explaining the reason by generalization, it would
be required to prove a single proposition of a more general
nature and then to construct a structure that intuitively shows
that these 1482 cases are special cases. This is unlikely to be so,
as Coqʼs formal verification of the four-color problem shows,
but it may be an example of the difficulty of presenting an ex-
planatory proof. It is important to note that Coqʼs formalization
has successfully verified provability of the four-color theorem.
However, the proof obtained do not provide us with a proof
that we can understand as explanatory.

Suppose we have a consumer loan approval system that
relies heavily on software. Suppose the software has proof ex-
pressions using logical methods. Suppose now that the sum-
mary of the proof representation is human readable in natural
language using the methodology sketched above. Suppose
that proof is given that Ms. Aʼs loan application as submitted
does not meet the criterion; the general provability criterion
that Dowek suggests might be interpreted as involving some
kind of fairness: instead of proof that only applies to Ms. A in

a discriminatory way, it might be interpreted to mean that all
people in a certain condition are entitled to a loan without
meeting the criteria. After it is proven that they do not meet
the criteria and cannot receive a loan, the proof would then
take the form of an explanation that Ms. A also cannot receive
a loan because Ms. A is an instance of the people.

3.5 Large Language Models
We have presented the idea of using a combination of proof

assistant systems and Large Language Models in a cooperative
manner for producing explanatory proofs. I would like to take
this opportunity to introduce some of our groupʼs data-centric
AI research on formal reasoning and explanations of formal
inference. Here, we are specifically evaluating reasoning ability
of LLMs and building datasets.

The typical version of Peirceʼs abdactive reasoning is to infer
a hidden explanatory hypothesis in the syllogistic inference
format (where the conclusion and the major hypothesis are
explicit). When LLMs were used to evaluate the reasoning
ability of the Abduction tasks, some of the LLMs performed
well enough. (5) Although this is only one of the initial studies,
we note that the ability of LLMs to handle reason-conclusion
relationships appears to be similar to that of humans. It is also
known that LLMsʼ reasoning is prone to errors due to human
psychological biases, such as those represented by cognitive
biases, even when limited to syllogistic reasoning and plain
propositional logical reasoning tasks. On the other hand, our
group set up a prompt to have LLMs respond to a logical
reasoning task while explaining the path to the conclusion of
the task in the form of a predicate logical terms. The results
showed that the model tends to be less prone to cognitive
bias and the number of correct responses generally increases
when a logical explanation is provided. (6)

3.6 An example of logical summarized proof of computa-
tional proof from the B-level network environments and logi-
cal formal verification

The network environment is one of the hallmarks of the B-
level environment, and it often appears that probabilistic and
statistical elements that go beyond symbolic processing-
based formal verification are becoming more prominent in the
formal verification or formal method paradigm for the network
environment. Needless to say, the focus is on what goes be-
yond symbolic computation in the C-level machine learning
and big data environments.

Security verification of network communications is often
performed using logical verification methods as an exten-
sion of software security verification. This includes security
(authentication, secrecy, etc.) of cryptographic protocols that
are appropriate for the purpose. There have been two major
methods for security protocol verification. One is a formal
method and the other is a cryptography-based computational

10 Studies in Science and Technology, Volume 14, Number 1, 2025

method. For example, in our groupʼs research on security
protocol verification, a series of message exchanges along a
protocol can be expressed in terms of logical proofs. On the
other hand, in the cryptology-based method, security proofs
are based on, for example, through discussions of the compu-
tational model of a probabilistic Turing Machine. If the formal
verification of security protocol at the level of symbolic logic
proofs is successful, the question of whether it can be said to
be secure in the cryptographic-computational model that is
closer to the real world (than the logical symbolic model) is a
problem related to the reliability of formal verification (logic
proof) method, and this question is called the computational
soundness problem of formal verification. Our groupʼs results (7)
include an affirmative proof of computational soundness as
well as verification methods for the case in which a notion of
compatibility is primitive and for the case in which indistin-
guishability is the primitive. Proofs of security properties by
logical proof method are much simpler and explanatory than
those by the cryptographic computational method. The logi-
cal proofs by the formal method are symbolic summarized
proofs of the computational proofs for the computational
real world. However, it is guaranteed that the computational
details can be ignored once the computational soundness is
established. In fact, computational soundness is established.
Hence, we can work on easily understandable explanatory
logical proofs. As already discussed, the notion of summarized
proof is sometimes needed for proofs to be explanatory. The
example of summarized proofs given here may be instructive
when further investigation on summarized proofs is needed.

Security-protocols for e-voting via network have been stud-
ied for a long time to support secure e-elections. On the other
hand, we have heard that there has been a proposal in the
past for an empiricist-practical position that differs from the
traditional rational-logical position. The proposal is that if the
results of electronic voting are counted on the servers of each
political party independently and the results of the winners
and losers do not differ, then minor discrepancies in the results
can be ignored and the vote count can be considered to have
been final. The fact that exit polls using AI sometimes fail to
predict the outcome of elections (who is the winner) seems to
indicate the necessity of taking into account the logical posi-
tion and method for secure e-voting.

4. Basic research toward a fair information presentation
environment that supports people’s independent decision-
making

Departing from the motivation of this article so far, which
has been to question the reasons and explanations for deci-
sions by software and AI, we now consider the situation that
we are in a position to make a decision. We would like to ask
what kind of information presentation does not contain bias
or manipulation and facilitates proactive decision making.

Fake news, fake information, and behavioral targeting
ads through the internet and AI environment—all these are
overflowing. They are major bias factors in our individual and
group decision making, and are also involved in fraud and
other crimes.

As already indicated in the Introduction, the purpose of this
article is not to technically discuss solutions to the problems
of the current C-level environmental society itself, it is to find
common problems with those problems from the human
procedural level (A-level) societies with software and network
procedural level (B-level), and to discuss some aspects of the
underlying factors of the problems of todayʼs digital and AI-
environmental society.

As I have already indicated, my position in this article is that
some of the essential sources of the ethical issues in the C-lev-
el environment are already present in the A-level and B-level
environments, and that it is meaningful to study C-level issues
from a new perspective by reexamining the issues already
present in A-level and B-level environments. Here, I refer to a
basic research example of multi-attribute decision making,
which is a form of decision making in which multiple options
and their attributes are presented on a single matrix table (a
multi-attribute table) on paper or on a screen, and decision
makers make choices based on the information presented in
the table. A typical multi-attribute choice table would be a
product catalog that contains multiple products and multiple
attribute information for each product (such as a catalog of
digital cameras). A paper-based product catalog is a typical ex-
ample of primitive information presentation in an A-level envi-
ronment. Its e-commerce version is the primitive counterpart
of B-level information presentation. We refer to our research
on decision-making information presentation design and on-
line information presentation design.

Here, we would like to focus on “a single viewability” con-
cept. For example, Hino evaluates the system of “a single
view” public election poster boards (see Airo Hino, in August
13, 2024, Chuo-Koron for the exact argument). It has been
followed since the (A-level environment in our sense) society,
as supporting the three principles of democratic election
systems: Openness, Fairness, and Legitimacy. We live in an era
in which voters can obtain much of their information about
a particular candidate or party from their own political per-
spective via the internet (B-level environment). Under these
circumstances, some argue that there is no need for public
election poster boards. In addition, [along with current AI
technology (C-level environment)], targeted advertising and
biased information on social networking sites that suits indi-
vidual political preferences can become exclusively accessible,
a situation known as filter bubbles. On the other hand, the
election poster boards (or official election pamphlets) have
significance in a democratic election system, as they provide
an opportunity to compare and review the policies of other

11科学・技術研究　第 14 巻 1号　2025 年

特集：On explainability in digital computing environments

parties and basic demographic information of all candidates in
a given constituency, according to Hino. (8)

In our research on the design of multi-attribute, multi-
choice product catalog presentation, we use an eye tracker
method. We aim to clarify how product catalog design can
help decision makers make decisions more easily. (9) We believe
that we can gain insight into the manipulative and induc-
tive designs. This research is rooted in the basic idea that fair
presentation is information presentation design that allows
decision makers to make decisions proactively. In reality, we
believe that the criteria for fair presentation design will change
for each domain of the multi-attribute table. For example, in
the domain of product catalogs as one-view information in
consumer behavior, our experimental results show that high-
lighting good attribute values to make them stand out is one
of the fair presentation designs. We found that the vertical
alignment of choices and the horizontal alignment of multiple
attributes tends to make decision making easier than a weakly
aligned product catalog. The role of the vertical and horizontal
axes is seen in both cases for paper-based product catalogs
in the A-level environment. On the other hand, in the B-level
environment of e-commerce, product options are overwhelm-
ingly arranged on the vertical axis and multiple attributes are
arranged on the horizontal axis, which is consistent with an
information presentation design suitable for decision mak-
ing. This is consistent with a decision-oriented information
presentation design. For example, a decision maker may focus
on multiple attributes of interest, narrow down a small num-
ber of items that have a trade-off relationship among many
items, and present a one-view-catalog of his/her order-made
products to make a trade-off-aware decision. If this final-stage
catalog is highlighted as shown above, it will be easier to
make a decision at the highest level. By analyzing data at the
eye-movement level, we can examine the design of product
catalogs that are decision-friendly for decision-makers through
trends in the relationship between the design of informa-
tion presentation and decision-making strategies. While early
decision making has often been considered easy, a two-step
strategy of narrowing down the choices and then considering
trade-offs among a small number of options is often a bet-
ter decision-making strategy. Although the product catalog
is only one example, this article shows that it is possible to
analyze the effects of fair information presentation and unfair
(e.g., manipulative, inducive) tabular presentation on decision
making only in the primitive setting of one-view information
presentation. I believe that this study provides basic informa-
tion for examining the fairness of information presentation in
a C-level environment.

Notes
(1) A dynamic and global annual celebration of World Logic

Day aims at fostering international at the dawn of this new

decade—indeed, now more than ever—the discipline of
logic is utterly vital to our societies and economies. Com-
puter science and digital technology, which provide the
structure for todayʼs ways of life, are rooted in logical and al-
gorithmic reasoning. Computer science and digital technol-
ogy, which provide the structure for todayʼs ways of life, are
rooted in logical and algorithmic reasoning. Audrey Azoulay,
Director-General of UNESCO.

(2) UNESCOʼs first-ever global standard on AI ethics—the
ʻRecommendation on the Ethics of Artificial Intelligence,ʻ
adopted in 2021, is applicable to all 194 member states of
UNESCO. Recommendation on the Ethics of Artificial Intel-
ligence UNESCO 2022.

(3) Cf. Tennent, R. D. (2002). Specifying software. Cambridge
University Press. Let S be a part of a program; the state of S
before its execution is called the pre-condition of S, and the
state of S after its execution is called the post-condition of
S. The pre-condition and post-condition of S are generally
expressed by logical expressions in predicate logic. That “if
P holds before the execution of S, then Q holds after the
execution of S.” In symbol, P {S} Q, and P and Q are the pre-
condition and post-condition of S, respectively. We will not
go into the technical details of Hoare logic here, but note
that the progress of the execution process of a program is
represented by a series of transitions of declaratively de-
scribed logical states, from the initial state to the final state.

(4) Dowek, G. (2023). From ethics to logic. Annals of the Japan
Association for Philosophy of Science, Vol. 32, pp. 1-16. The
authorʼs standpoint in this article is not always shared with
Dowek, but the authorʼs argument is very much inspired
and influenced from his.

(5) Abe, H., Ozeki, K., Ando, R., Morishita, T., Mineshima, K., and
Okada, M. (2024). Abductive reasoning with syllogistic forms
in large language models. Proceedings of Human and Artifi-
cial Rationalities, pp. 3-17.

(6) Ozeki, K., Ando, R., Morishita, T., Abe, H., Mineshima, K., and
Okada, M. (2024). Exploring reasoning biases in large lan-
guage models through syllogism: Insights from the Neu-
BAROCO dataset. Findings of ACL, pp. 16063-16077.

(7) Bana, G. and Okada, M. (2016). Semantics for “enough-
certainty” and fittingʼs embedding of classical logic in S4.”
Computer Science Logic, Vol. 34, pp. 1-34. Bana, G., Chadha,
R., Eeralla, A. K., Okada, M. (2019). Verification methods for
the computationally complete symbolic attacker based on
indistinguishability. ACM Transactions on Computational
Logic, Vol. 21, No. 2, pp. 1-44.

(8) Hino, A. (2024). Tochiji-sen 'hakku' de towa reru Nihon no
senkyo [Japanʼs elections at stake in the Tokyo gubernatorial
election in district 8]. Chuo-Koron, September issue (in Japa-
nese).

(9) Morii, M., Ideno, T., Tamari, Y., Takemura, K., and Okada, M.
(2024). An eye-tracking study on the effects of using high-

12 Studies in Science and Technology, Volume 14, Number 1, 2025

lighted multi-attribute tables: A preliminary report. Pro-
ceedings of Diagrammatic Representation and Inference,
pp. 467-471. Morii, M., Takemura, K., and Okada, M. (2020).
On the effects of changing multi-attribute table design on
decision making: An eye-tracking study. LNAI, Vol. 12169,
pp. 365-381.” Morii, M., Ideno, T., Takemura, K., and Okada,
M. (2017). Qualitatively coherent representation makes de-
cision: Making easier with binary-colored multi-attribute
tables: An eye-tracking study. Frontiers in Psychology, Vol. 8,
1388.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number

21H00467, 23K20416, and 21K18339.

Published: June 30, 2025

Copyright © 2025 Society for Science and Technology

This article is licensed under a Creative Commons [Attribution-
NonCommercial-NoDerivatives 4.0 International] license.

 https://doi.org/10.11425/sst.14.5

